| Sr. No | Videos | Description | Duration | Catagory | Main Category | | |--------|--------------------------------------|---|----------|-----------------------------------|--------------------------------|--| | | Segment 4: Predictive Bioinformatics | | | | | | | 1 | Prodigal | Utilization of Prodigal software for gene prediction. Describes the properties, modes and parameters of Prodigal. Analysis of a particular genome and predicted genes out of it utilizing prodigal software. | 25:46:00 | Gene Prediction | Gene Prediction | | | 2 | GeneMark | Utilization of GeneMark tool for gene prediction. Describes GeneMark family of programs. Gene prediction analysis using GeneMark. hmm. | 16:51 | Gene Prediction | Gene Prediction | | | 3 | GenScan | Utilization of GenScan webserver for gene prediction. Describes the parameters of GenScan. Analysis of a particluar nucleotide sequence and predicting gene out of it. | 10:40 | Gene Prediction | Gene Prediction | | | 4 | AUGUSTUS | Utilization of AUGUSTUS tool for gene prediction and annotation. Describes the parameters for utilizing the AUGUSTUS. Analysis of the result provided by AUGUSTUS and step-by-step procedure to find a novel gene. | 17 : 27 | Gene Prediction | Gene Prediction | | | 5 | Ali2D | Use of Ali2D tool for secondary structure prediction. Detailed analysis of the secondary structure prediction results. | 4:09 | Secondary Structure
Prediction | Secondary Structure Prediction | | | 6 | Quick2D | Use of Quick2D tool for secondary structure prediction. Detailed analysis and information retrieval of the secondary structure features like alpha-helices, extended beta-sheets, transmembrane helices and disorder regions of the query protein. | 4:33 | Secondary Structure
Prediction | Secondary Structure Prediction | | | 7 | Jpred | Use of Jpred server for secondary structure prediction. A detailed analysis of secondary structure features' information of the query protein sequence. | 4:54 | Secondary Structure
Prediction | Secondary Structure Prediction | | | 8 | MODELLER | Introduction to Modeller tool and its uses. Procedure to predict a protein structure through Modeller. Evaluation method of MODELLER to find out the most optimal and good protein structure predicted. | 36:13:00 | 3D Structure
Prediction | 3D Structure Prediction | |----|--------------------------------------|---|----------|----------------------------|-------------------------| | 9 | ROBETTA | Introduction to Robetta, a protein structure prediction tool. Procedure to predict and analyse protein structure. Prediction of protein structure for a query sequence using ab-initio techniques. | 14:39 | 3D Structure
Prediction | 3D Structure Prediction | | 10 | M4T | Introduction to M4T, a protein structure prediction tool. Procedure to predict the protein structure from a Target protein sequence, using the M4T server. | 9:26 | 3D Structure
Prediction | 3D Structure Prediction | | 11 | SwissModel | Introduction to homology modeling and SwissModel, a homology modeling server. Prediction of protein structure for a target sequence using SwissModel. Defines parameters for a good protein structure and analysis of resulting protein. | 12:52 | 3D Structure
Prediction | 3D Structure Prediction | | 12 | PEPFOLD 3 peptide structure modeling | Introduction to PEPFOLD_3 server and its purpose. Generating 3D models of a peptide using the query sequence. Defines parameters and analysis of results. | 13:14 | 3D Structure
Prediction | 3D Structure Prediction | | 13 | HHPRED | Basic description of HHPred tool and its purpose. Procedure to predict the protein structure from target sequence through HHPred tool. Selecting a particular template structure for homology modeling of target protein using HHPred tool. | 14:09 | 3D Structure
Prediction | 3D Structure Prediction | | 14 | IntFOLD | Introduction to IntFOLD and its purpose. Procedure to predict the protein structure from target protein sequence, using the IntFOLD server. Interpretation of results. | 8:41 | 3D Structure
Prediction | 3D Structure Prediction | | 15 | Homology Modeling
Using MOE | Introduction to homology modeling and Molecular Operating Environment (MOE) tool. Generating a homology 3D model of a target protein using MOE. Analysis of results and how to align the two structures of the protein using the MOE tool. | 12:34 | 3D Structure
Prediction | 3D Structure Prediction | |----|--------------------------------|--|-------|----------------------------|-------------------------| | 16 | PROSA | Introduction to ProSA server. Procedure to evaluate protein model predicted using different methods. Analysis of three different structures of the protein predicted from three different tools for their comparative analysis. | 10:05 | 3D Structure
Evaluation | 3D Structure Evaluation | | 17 | SAVES | Introduction to SAVES tool and its purpose. Procedure to evaluate a predicted protein model using Saves server. Analysis of Ramachandran plot generated by the SAVES server for the predicted query protein structure. | 5:31 | 3D Structure
Evaluation | 3D Structure Evaluation | | 18 | WhatCheck | Introduction to WhatCheck, a protein model evaluation tool. Utilization of WhatCeck tool for protein model evaluation. Analysis and implication of results for protein structure evaluation. | 8:40 | 3D Structure
Evaluation | 3D Structure Evaluation | | 19 | ERRAT | Introduction to ERRAT, a protein model evaluation tool. Procedure to evaluate experimentally determined protein model. Analysis and interpretation of results to evaluate the best model. | 6:44 | 3D Structure
Evaluation | 3D Structure Evaluation | | 20 | Verify3D | Introduction to Verify3D, a protein model evaluation tool. Procedure to evaluate a protein model using the web server of Verify3D. Interpretation and analysis of the results provided by Verify3D | 8:31 | 3D Structure
Evaluation | 3D Structure Evaluation | | 21 | RAMPAGE | Introduction to RAMPAGE, a protein model evaluation tool. Procedure to evaluate protein model based on Ramachandran plotting by RAMPAGE. Interpretation of Ramachandran plotting to select the best model. | 3:29 | 3D Structure
Evaluation | 3D Structure Evaluation | | 22 | ProCheck | Introduction to ProCheck, a protein model evaluation tool. Utilization of ProCheck to check quality of protein model based on certain parameters. Interpretation of results to select the best model. | 12:36 | 3D Structure
Evaluation | 3D Structure Evaluation | |----|---|--|----------|-------------------------------|----------------------------| | 23 | Chimera | Introduction to UCSC Chimera and its uses. Visualization and analysis of a protein 3D model using Chimera. Comparing and analysis of more than one protein structure for research purposes. | 25:23:00 | 3D Structure
Visualization | 3D Structure Visualization | | 24 | PyMol | Introduction to PyMol. Defines parameters to visualize and analyze the protein 3D model. Commands used in PyMol to visualize and manipulate protein 3D model. | 40:48:00 | 3D Structure
Visualization | 3D Structure Visualization | | 25 | Molecular Docking of
Protein Ligand using
MOE | Introduction to Molecular Operating Environment (MOE) and molecular docking. Preparation of the receptor for docking. Searching active site residues in receptor and ligand preparation. Docking of receptor and ligand molecules and analysis of the docked complex. | 9:23 | Molecular Docking | Molecular Docking | | 26 | Protein-Protein
Docking
Using MOE | Basic description of Molecular Operating Environment (MOE) software and protein-protein docking. Procedure to dock a ligand protein against a receptor protein (protein-protein docking) using the MOE software. Defines parameters to select the best docking conformation for a specific drug candidate. | 11:38 | Molecular Docking | Molecular Docking | | 27 | Structure Based Drug
Desinging
Using MOE | Introduction to MOE software and structure based drug designing. Procedure to design a drug based on knowledge of 3D structure of biological target. Defines parameters and modifications to make the ligand molecule an effective drug candidate. | 16:19 | Molecular Docking | Molecular Docking | | 28 | Docking a Library of
Compounds
using MOE | Introduction to Molecular Operating Environment (MOE) software and its uses. Procedure of docking a library of compounds against a particular protein of interest using MOE software. Defines parameters to analyse the best docking conformation to indicate the stable addict. | 19:48 | Molecular Docking | Molecular Docking | |----|--|---|-------|-------------------|-------------------| | 29 | SwissDock Protein
Ligand Docking | Introduction to SwissDock server and its purpose. Procedure to dock a ligand compound against a receptor molecule (Protein-Ligand Docking). Defines parameters to be selected for docking process. Creating ligand and receptor files in the required formats. | 19:16 | Molecular Docking | Molecular Docking | | 30 | ZDock Protein-
Protein/
Ligand Docking | Introduction to ZDOCK server and its purpose. Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the ZDOCK server. Procedure to dock a protein molecule against its multimers using the M-ZDOCK program and analysis of results. | 19:35 | Molecular Docking | Molecular Docking | | 31 | PatchDock Protein-
Protein Docking | Introduction to PatchDock server and its purpose. Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the PatchDock server. Analysis of results and the best complexes refined by FireDock server. | 17:39 | Molecular Docking | Molecular Docking | | 32 | ClusPro Protein-
Protein Docking | Introduction to ClusPro server and its purpose. Utilization of various features of ClusPro to perform protein-protein doc king. Describes advanced functionalities offered by ClusPro to select the best docked complex. | 21:44 | Molecular Docking | Molecular Docking | | 33 | MDockPEP protein
peptide docking | Introduction to MDockPEP server and its uses. Procedure to dock a receptor protein molecule against the ligand peptide molecule (Protein-Peptide docking) using the MDockPeP server. Description to prepare the receptor file for docking process and analysis of the results. | 10:06 | Molecular Docking | Molecular Docking | |----|--|--|-------|-------------------------------|----------------------------| | 34 | PDBepisa Docking
Complex Evaluation | Introduction to PDBePISA server and its purpose. Evaluation of protein-protein and protein-ligand docked complex through PDBePISA server. Defines parameters for an optimal docking complex model. | 23:27 | Docking Complex
Evaluation | Docking Complex Evaluation | | 35 | PDBsum Docking
Complex Evaluation | Introduction to PDBsum server and its uses. Procedure to evaluate protein-protein and protein-ligand docking complex using PDBsum server. Analysis and interpretation of evaluation results. | 18:49 | Docking Complex
Evaluation | Docking Complex Evaluation | | 36 | SwissADME | Introduction to SwissADME server and its purpose. Evaluation of pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules or ligands. Defines parameters for an optimal docking complex model. | 15:31 | Docking Complex
Evaluation | Docking Complex Evaluation |