Sr. No	Lecture Tiltle	Description	Category	Duration
		Segment 3: 3D Structure Prediction		
1	PEPFOLD 3 Peptide Structure Modeling	 Introduction to PEPFOLD_3 server and its purpose. Generating 3D models of a peptide using the query sequence. Defines parameters and analysis of results. 	Peptide Structure prediction	13:14
2	MODELLER	 Introduction to Modeller tool and its uses. Procedure to predict a protein structure through Modeller. Evaluation method of MODELLER to find out the most optimal and good protein structure predicted. 	3D Structure Prediction	36:13:00
3	SwissModel	 Introduction to homology modeling and SwissModel, a homology modeling server. Prediction of protein structure for a target sequence using SwissModel. Defines parameters for a good protein structure and analysis of resulting protein. 	3D Structure Prediction	12:52
4	HHPRED	 Basic description of HHPred tool and its purpose. Procedure to predict the protein structure from target sequence through HHPred tool. Selecting a particular template structure for homology modeling of target protein using HHPred tool. 	3D Structure Prediction	14:09
5	M4T	 Introduction to M4T, a protein structure prediction tool. Procedure to predict the protein structure from a Target protein sequence, using the M4T server. 	3D Structure Prediction	9:26

6	IntFOLD	 Introduction to IntFOLD and its purpose. Procedure to predict the protein structure from target protein sequence, using the IntFOLD server. Interpretation of results. 	3D Structure Prediction	8:41
7	ROBETTA	 Introduction to Robetta, a protein structure prediction tool. Procedure to predict and analyse protein structure. Prediction of protein structure for a query sequence using ab-initio techniques. 	3D Structure Prediction	14:39
8	Homology Modeling Using MOE	 Introduction to homology modeling and Molecular Operating Enviroment (MOE) tool. Generating a homology 3D model of a target protein using MOE. Analysis of results and how to align the two structures of the protein using the MOE tool. 	3D Structure Prediction	12:34