Sr. No	Lecture Title	Description	Category	Duration		
	Segment 2: Protein Sequence Alignment & Analysis					
1	NEEDLE: Pairwise Global Sequecne Alignment	 Introduction to EMBOSS Needle, a pairwise alignment tool. Procedure to perform and analyse global alignment and track the optimum sequence. 	Pairwise Sequence Alignment	20:02		
2	WATER: Pairwise Local Sequence Alignment	 Introduction to EMBOSS Needle, a pairwise alignment tool. Procedure to perform and analyse local alignment and how Needleman-Wunsch algorithm works. 	Pairwise Sequence Alignment	9:10		
3	UniProt Align & Alignment of 2 Proteins	 Description of UniProt Align tool hosted by UniProt Database. Aligning multiple sequences using UniProt Align tool. Annotation of alignment results. 	Pairwise Sequence Alignment	3:47		
4	Alignment Between Two PDB Sequences & Structures	 Alignment of biomolecular structures and sequeces through a PDB tool; sequence & structure alignment. Defines parameters to align two query molecules and it's analysis. 	Pairwise Sequence & Structure Alignment	6:07		
5	Clustal Omega: Multiple Sequence Alignment	 Introduction to Clustal Omega, a multiple sequence alignment tool. Procedure to align multiple sequence using Clustal Omega. Interpretation of the output final alignment. 	Multiple Sequence Alignment	19:18		
6	Aln2Plot: Prediction of Hydrophobocity Between Two Proteins	 Introduction to Aln2Plot tool. Generates graphical plots of hydrophobicity and side chain volumes for two or more query proteins using the Aln2Plot tool. 	Protein Analysis	2:30		

7	REPPER: Prediction of Gapless Repeats in Protein Sequences	 Introduction to REPPER to analyses regions with short gapless REPeats in protein sequences. Analysis of output that is complemented by coiled coil prediction (COILS) and optionally by secondary structure prediction (PSIPRED). 	Protein Analysis	2:25
8	SignalP: Prediction of Signal Peptide in Proteins	 Introduction of SignalP tool. Predicton of signal peptide from protein sequence. 	Protein Analysis	7:57
9	TargetP: Prediction of Protein Localization	 Introduction to TargetP server. Prediction and detailed analysis of Mitochondrial transfer peptide through TargetP. 	Protein Analysis	9:21
10	ScanProsite: Prediciton of Important Functional Sites in Proteins Using Profiles	 Establishment of ScanProssite, an improved version of the web-based tool provided by PROSITE. Scan proteins for matches against the PROSITE collection of motifs as well as against your own patterns. 	Motif & Domain Analysis	7:36
11	HMMER: Prediction of Import Functional Sites in Proteins Using Hidden Markov Models	 Introduction of HMMER; hidden Markov model based database for protein profiling. Retrieve the sequence homologs of the query protein using the HMM profile method and it's elaborated analysis. 	Motif & Domain Analysis	13:16
12	SMART: Finding Domains in Proteins	 Introduction of SMART; Simple Modular Architecture Research Tool for the identification and analysis of protein domains. Detection of protein domains from the multiple sequence alignments of proteins. 	Protein Analysis	6:44
13	Ali2D	 Use of Ali2D tool for secondary structure prediction. Detailed analysis of the secondary structure prediction results. 	Secondary Structure Prediction	4:09

14	Quick2D	 Use of Quick2D tool for secondary structure prediction. Detailed analysis and information retrieval of the secondary structure features like alpha-helices, extended beta-sheets, transmembrane helices and disorder regions of the query protein. 	Secondary Structure Prediction	4:33
15	HHrepID: Prediction Secondary Structure of Proteins	 Introduction to HHrepID, a web-based tool for the prediction of secondary structures of the protein. Find repetitive regions within a query protein sequence using the HHrepID tool. 	Secondary Structure Prediction	5:15
16	DeepCoil: Prediction of the Coiled-coil Domain Regions	 Introduction to a web based tool, DeepCoil. Prediction of the coiled coil domain regions within a query protein sequence. 	Secondary Structure Prediction	3:22
17	MARCOIL: Analysis of Coiled- coil Domains of Proteins	 Introduction to Marcoil, an HMM for the recognition of proteins with a CCD. Analysis and prediction of potential coiled-coil domains in protein sequences. 	Secondary Structure Prediction	4:05
18	Jpred: Prediction Secondary Structure of the Proteins	 Use of Jpred server for secondary structure prediction. A detailed analysis of secondary structure features' information of the query protein sequence. 	Secondary Structure Prediction	4:54