Sr. No	Lecture Title	Description	Category	Duration			
	Segment 5: Molecular Docking and Docking Complex Evaluation						
1	Molecular Docking of Protein Ligand using MOE	 Introduction to Molecular Operating Environment (MOE) and molecular docking. Preparation of the receptor for docking. Searching active site residues in receptor and ligand preparation. Docking of receptor and ligand molecules and analysis of the docked complex. 	Molecular Docking	9:23			
2	Protein-protein Docking using MOE	 Basic description of Molecular Operating Environment (MOE) software and protein-protein docking. Procedure to dock a ligand protein against a receptor protein (protein- protein docking) using the MOE software. Defines parameters to select the best docking conformation for a specific drug candidate. 	Molecular Docking	11:38			
3	SwissDock	 Introduction to SwissDock server and its purpose. Procedure to dock a ligand compound against a receptor molecule (Protein-Ligand Docking). Defines parameters to be selected for docking process. Creating ligand and receptor files in the required formats. 	Molecular Docking	19:16			
4	Docking a Library of Compounds using MOE	 Introduction to Molecular Operating Environment (MOE) software and its uses. Procedure of docking a library of compounds against a particular protein of interest using MOE software. Defines parameters to analyse the best docking conformation to indicate the stable addict. 	Molecular Docking	19:48			

5	ClusPro Protein-Protein Docking	 Introduction to ClusPro server and its purpose. Utilization of various features of ClusPro to perform protein-protein doc king. Describes advanced functionalities offered by ClusPro to select the best docked complex. 	Molecular Docking	21:44	
6	patchDock	 Introduction to PatchDock server and its purpose. Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the PatchDock server. Analysis of results and the best complexes refined by FireDock server. 	Molecular Docking	17:39	
7	MDockPEP protein peptide docking	 Introduction to MDockPEP server and its uses. Procedure to dock a receptor protein molecule against the ligand peptide molecule (Protein-Peptide docking) using the MDockPeP server. Description to prepare the receptor file for docking process and analysis of the results. 	Molecular Docking		
8	ZDOCK	 Introduction to ZDOCK server and its purpose. Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the ZDOCK server. Procedure to dock a protein molecule against its multimers using the M-ZDOCK program and analysis of results. 	Molecular Docking	19:35	
9	Structure Based Drug Desinging Using MOE	 Introduction to MOE software and structure based drug designing. Procedure to design a drug based on knowledge of 3D structure of biological target. Defines parameters and modifications to make the ligand molecule an effective drug candidate. 	Molecular Docking	16:19	
10	Discovery Studio+	 Introduction to Discovery Studio+ software and structure based drug designing. Procedure to design a drug based on knowledge of 3D structure of biological target. Defines parameters and modifications to make the ligand molecule an effective drug candidate. 	Molecular Docking	12:03	

11	AutoDock	 Introduction to AutoDock software and structure based drug designing. Procedure to design a drug based on knowledge of 3D structure of biological target. Defines parameters and modifications to make the ligand molecule an effective drug candidate. 	Molecular Docking		
12	PDBsum Docking Complex Evaluation	 Introduction to PDBsum server and its uses. Procedure to evaluate protein-protein and protein-ligand docking complex using PDBsum server. Analysis and interpretation of evaluation results. 	Docking Complex Evaluation	18:49	
13	PDBepisa Docking Complex Evaluation	 Introduction to PDBePISA server and its purpose. Evaluation of protein-protein and protein-ligand docked complex through PDBePISA server. Defines parameters for an optimal docking complex model. 	Docking Complex Evaluation	23:27	
14	SwissADME	 Introduction to SwissADME server and its purpose. Evaluation of pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules or ligands. Defines parameters for an optimal docking complex model. 	Docking Complex Evaluation		