Sr. No	Lecture Title	Description	Category	Duration		
	Segment 4: Control Flow & Biological Data Pre-processing in R					
1	If Else Statements	 Introduction to if-else statements in R. Describes the syntax of if-else statement. Describes script to utilize these conditional statements in R programming. 	Control Flow	4:15		
2	For Loops & Biological Data Binding	 Introduction to for loop in R programminf language. Describes the syntax of for loop and its uses. Describes script to bind multiple CSV files into a single data frame utilizing for loop. 	Control Flow	16:30		
3	While Loops & Reading Multiple Biological Datasets	 Introduction to while loop in R programming language. Describes the syntax of while loop and its uses. Describes script to read multiple files using the while loop and how it can be utilized to analyse data in Bioinformatics. 	Control Flow	16:16		
4	Data Frames	 Introduction to data frames in R programming language. Describes characteristics of data frames. Creating 2-D table of required data using builtin functions of data frame. 	Biological Data Analysis	6:30		
5	Loading Biological Data	 Importing the biological data in R proramming. Different ways to import loading biological data. Better visualization of data sets by loading data into R environment. 	Biological Data Analysis	7:55		
6	Saving Biological Data	 Describes to save CSV file from R using built-in functions of R. Getting working directive of the file. Changing working directive of R files. 	Biological Data Analysis	5:26		
7	R Notiation & Selecting Values from Biological Dataset	 Introduction to R Notation system. Describes methods for selecting values from biological datasets. Basic method to introspect data and use it for different analysis. 	Biological Data Analysis	4:09		
8	Positive Integers for Subsetting Biological Dataset (DataFrame)	 Introduction to positive interger for extracting data from dataset in R. Describes different ways to extract values and save them in new data frame. 	Biological Data Analysis	5:25		
9	Negative Integers for Subsetting Biological Dataset (DataFrame)	 Introduction to negative integers for extracting data from dataset. Describes different ways to extract values and save them in new data frame. 	Biological Data Analysis	5:28		

10	Zero Notation for Subsetting Biological Dataset (DataFrame)	 Introdcution to zero notation for extracting values from datasets in R. Describes different ways to extract data utilizing zero notation. 	Biological Data Analysis	1:09
11	Blank Spaces for Biological Data Subsetting	 Introduction to R notation system and blank spaces to extract data from datasets. Describes script to extract data from datasets using blank spaces. Advantages of blank spaces notation in R. 	Biological Data Analysis	3:20
12	Dollar Signs for Biological Data Subsetting	 Introduction to R notation system and dollar signs notation. Describes script to extract data from data frames using dollar signs. 	Biological Data Analysis	2:58
13	Modifying Values in Existing DataFrames/Datasets	 Introduction to R notation system. Describes script to modify values and creating new values using R notation system. 	Biological Data Analysis	7:06
14	NA Values in Biological Datasets	 Introduction to NA values in R datasets. Finding NA values in R datasets. Describes script to insert NA values in datasets using stats operations. 	Biological Data Analysis	5:24
15	Figuring Out NA Values in Biological Datasets	 Introduction to NA values in R datasets. Describes to figure out NA values using built-in functions. 	Biological Data Analysis	2:06
16	Logical Subsetting in Biological Datasets	 Introduction to ligical subsetting in R language and its uses. Describes various logical operators and their syntax. Describes script for logical subsetting and its importance in analyzing data in Bioinformatics. 	Biological Data Analysis	9:45