Sr. No	Videos	Description	Duration	Catagory	Main Catagory
	Segement 1: Bioinformatics Databases				
1	Introduction to NCBI	- Basic introduction to NCBI - Functionality and search categories provided by NCBI	18:01	NCBI	Biological Databases
2	Sequence Retrieval	- Biological sequence data storage, retrieval and analysis. - Describes the recearch methodologies on NCBI.	16:16	NCBI	Biological Databases
3	Sequence Analysis	- Biological sequence data storage, retrieval and analysis. - Retrieval of various sequence related information.	17:59	NCBI	Biological Databases
4	PubMed Central \& ENTREZ	- Introduction to PubMed - Retrieval of millions of citations for Biomedical literature from MEDLINE and Life Sciences journals.	11:06	NCBI	Biological Databases
5	FASTA vs GenBank	- Basic difference between the FASTA and Genbank formats. - Main differences of their structures and the information they provide.	18:26	NCBI	Biological Databases
6	Gene	- Describes the use of Gene Database. - Analyze a particular gene, its location, expression and functional information.	30:21:00	NCBI	Biological Databases
7	GenBank	- Description of GenBank database. - Accession of the most up-to-date and comprehensive DNA sequence information within scientific community.	6:50	NCBI	Biological Databases
8	Assembly \& NCBI Genome	- Introduction to NCBI Genomes \& Assembly databases. - Retrieval and analysis of an entire genome using Genome database. - Procedure to download and retrieve the fully sequenced genome using Assembly database.	36:14:00	NCBI	Biological Databases
9	Genome Reference Consortium (GRC)	- Describes the main purpose of establishing Genome Reference Consortium (GRC). - Discuss about 4 main genome assemblies of Human, Mouse, Zebrafish and Chicken along with their details.	7:48	NCBI	Biological Databases
10	BioProject	- Introduction to BioProject, a sub-database of NCBI. - Retrieval of various information for a particular organism/species from the respective BioProject.	6:39	NCBI	Biological Databases
11	BioSystems	- Briefly introduces the BioSystems database, a subdatabase of NCBI. - Describes the procedure of analyzing metabolic pathways of protein interactions.	4:16	NCBI	Biological Databases
12	BioSample	- Introduction to the BioSample database, sub-database National Center for Biotechnology Infromation. - Describes various features and information provided by BioSample.	2:56	NCBI	Biological Databases

13	Sequence Read Archive (SRA)	- Introduction to Sequence Read Archive (SRA) database. - Describes the procedure of retrieving and downloading the seqeunce reads for a particular genome in the specific format.	7:14	NCBI	Biological Databases
14	Introduction to UCSC Genome Browser \& SARS-CoV-2 Viral Genome	- Detailed introduction to UCSC Genome Browser. - Retrieval and analysis of SARS-CoV-2 genome.	13:40	UCSC	Biological Databases
15	Retrieve an Entire Genome \& Retrieval of SARS-CoV-2 Viral Genome	- Explains the procedure to retrieve entire genome of SARS-CoV-2 using UCSC Genome Browser. - Retrieval of an entire genome through two different Operating System, Linux and Windows.	9:40	UCSC	Biological Databases
16	Table Browser \& SARS-CoV-2 Viral Genome	- Introduction to UCSC Table Browser Tool. - Retrieval of SARS-CoV-2 genome and its different gene seqeunce using Table Browser.	12:15	UCSC	Biological Databases
17	Retrieval of Genomic Data \& Annotation of SARS-CoV-2 Viral Genome	- Introduction to UCSC Table Browser Tool. - Retrieval and annotation of SARS-CoV-2 genome - Difference between GFF, GFF3 and GTF annotation files.	5:29	UCSC	Biological Databases
18	Visualization of Genomic Data on the Genome Browser \& SARS-CoV-2 Genome	- Interactive visualization of SARS-CoV-2 genome using UCSC Genome Browser. - Defines parameters for the visualization of genomic data.	10:51	UCSC	Biological Databases
19	Introduction to ENSEMBL	- Introduction to ENSEMBL Genome Browser and information it provides. - Describes its various features and tools utilized for particular search.	7:49	ENSEMBL	Biological Databases
20	Retrieval of a Gene-ProteinChromosomal Region	- Procedure to retrieve gene, protein and chromosomal region and their visualization. - Genomic annotation.	18:01	ENSEMBL	Biological Databases
21	Gene Analysis \& Annotation	- Procedure for retrieval of a particular gene and analysis of genomic data through ENSEMBL. - Comparative genomics.	34:40:00	ENSEMBL	Biological Databases
22	Genome Assembly Retrieval and Analysis	- Retrieval of genome assembly for a particular vertebrate species. - Provides analysis of genomic data for vertebrates.	10:23	ENSEMBL	Biological Databases
23	Comparative Genomics Analysis	- Retrieval of genome assembly for a particular vertebrate species. - Comparative genomics. - Download the alignment files for CDS, proteins or RNA sequences.	5:34	ENSEMBL	Biological Databases
24	Database of Short Genetic Variations (dbSNP)	- Introduction to Database of Single Nucleotide Polymorphism. - Retrieval of SNP variation information within Human genome. - Provides clinical significance and frequency of the different variations.	12:16	NCBI	Biological Databases

25	Database of Genomic Structural Variation (dbVar)	- Introduction to database of genomic structural variation. - Retrieval of information about the variation of Human genome.	6:24	NCBI	Biological Databases
26	Variation	- Retrieval and analysis of different types of variants through ENSEMBL. - Describes phenotypic relationship between variants. - Provides comprehensive way to access data widely used in genomic analysis.	24:36:00	ENSEMBL	Biological Databases
27	NCBI BLAST Database Searching	- Describes NCBI BLAST searching to find regions of similarity between biological sequences. - Calculates statistical significance. - Compares nucleotide and protein seqeunces to seqeuence databases.	25:36:00	NCBI	Biological Databases
28	BLAST/BLAT	- Describes ENSEMBL BLAST/BLAT searching to find regions of similarity between biological sequences. - Calculates statistical significance of matches - Analysis of sequence alignment between query and target sequence.	15:08	ENSEMBL	Biological Databases
29	HomoloGene (Gene and Protein Families)	- Description of Homologene, sub-database of NCBI. - Compares and seqeuence homologs and mapping back to the DNA seqeunce.	6:10	NCBI	Biological Databases
30	RefSeq Database	- Introduction to RefSeq database, a sub-database of NCBI. - Provides integrated and well-annotated set of reference sequences. - Non-Redundant Data Storage, Retrieval, Analysis and Visualizing.	11:15	NCBI	Biological Databases
31	Taxonomy	- Provide nomenclature and classification for the source organisms in the sequence databases. - Information about the query's taxonomy ID and provides complete detail of the query's lineage.	9:56	NCBI	Biological Databases
32	Introduction to UniProt	- Introduction to UniProt, its purpose and uses. - Sub-databases hosted by UniProt database.	9:56	UniProt	Protein Databases \& Analysis
33	UniProtKB \& Protein Analysis	- Introduction to UniProtKB database. - Retrieval and analysis of protein seqeunces and genomic level information of proteins.	39:29:00	UniProt	Protein Databases \& Analysis
34	Introduction to Protein Data Bank (PDB)	- Introduction to Protein Data Bank (PDB). - Describes the repository of experimentally structured biomolecules.	6:44	PDB	Protein Databases \& Analysis
35	Introduction to Molecular Modeling Database (MMDB)	- Introduction to Molecular Modeling Database (MMDB). - Retrieval and analysis of a particular dataset from MMDB. - Lists the tools provided by MMDB.	8:06	NCBI	Protein Databases \& Analysis
36	UniProteome \& Retreieval of an Entire Proteome	- Introduction to UniProteome - Retrieval of an entire proteome - Proteomics data and data annotation	13:05	UniProt	Protein Databases \& Analysis

37	UniRef \& Retrieve Protein Clusters	- Introduction to UniRef - Describes clusters sets from UniParc and UniProtKB - Sequence space at three resolution (UniRef100, UniRef90, UniRef50).	11:55	UniProt	Protein Databases \& Analysis
38	UniParc \& Find the NonRedundant Entries	- Introduction to UniParc - Retrieval of non-redundant protein sequences. - Non-redundant protein sequence data and data annotation.	4:58	UniProt	Protein Databases \& Analysis
39	Introduction to InterPro	- Protein family classification and analysis using InterPro database. - Proteome analysis of a particular protein. - Protein families domains analysis.	4:10	InterPro	Protein Databases \& Analysis
40	Protein \& Protein Domain Analysis	- Protein and protein domain analysis through InterPro database. - Protein families domain analysis.	9:29	InterPro	Protein Databases \& Analysis
41	InterPro - Protein Family Classifcation and Analysis	- Introduction to UniProt BLAST searching tool. - Finds functional and evolutionary relationship between sequences. - Search query sequences against the entire UniProt database.	14:35	InterPro	Protein Databases \& Analysis
42	Peptide Search	- Introduction to Peptide Search tool hosted by UniProt database. - Search methods of retrieving a particular amino acid sequence. - Retrieving regions of particular protein against the entire database of UniProt.	3:15	UniProt	Protein Databases \& Analysis
43	UniProt Align \& Alignment of 2 Proteins	- Description of UniProt Align tool hosted by UniProt Database. - Aligning multiple sequences using UniProt Align tool. - Annotation of alignment results.	3:47	UniProt	Protein Databases \& Analysis
44	Accurately Searching for a Protein Protein Analysis	- Describes different search methods to retrieve query protein molecule on PDB. - Defines parameters and filters to specify the searches. - Accurately seatching a protein structure on Protein Data Bank (PDB).	13:55	PDB	Protein Databases \& Analysis
45	Browsing PDB According to Annotation	- Retrieval of a protein structure using Biological annotation on PDB. - Describes categories of annotation and their description.	6:52	PDB	Protein Databases \& Analysis
46	Digging Out Categorized \& Specific Protein Structures from PDB Archives	- Retrieval of detailed information for a particular protein structure through Protein Data Bank (PDB). - Accessing the PDB Archive using multiple sorts of parameters.	6:23	PDB	Protein Databases \& Analysis
47	3D Structure Visualization on PDB	- Visualization and analysis of protein structure using visualization tool hosted by PDB. - Defines parameters to interactively visualize the protein.	10:49	PDB	Protein Databases \& Analysis

48	Biological Annotation and Protein Features View \& Analysis	- Visualization of features of the query protein through Protein Data Bank. - Procedure to look into the visualization and analysis of the protein features.	8:18	PDB	Protein Databases \& Analysis
49	Genomic Discovery of Protein Structure Through Gene	- Search the query gene against a genome and discovered the protein structure by utilizing PDB. - Describes correspondence between the 3D structure of the protein and the human genome.	4:07	PDB	Protein Databases \& Analysis
50	Mapping Genomic Position to Protein Sequence and 3D Structure	- Description to map a genomic position to a protein sequence and 3D structure. - Defines conditions to map genomic position to protein sequence and structure.	4:34	PDB	Protein Databases \& Analysis
51	Alignment Between Two PDB Sequences \& Structures	- Alignment of biomolecular structures and sequeces through a PDB tool; sequence \& structure alignment. - Defines parameters to align two query molecules and it's analysis.	6:07	PDB	Protein Databases \& Analysis
52	Ligands	- Retrieval of a particular ligand molecue from PDB-Ligand dictionary on Protein Data Bank (PDB). - Defines parameters and filters to specify the Ligand search. - Visualization of ligand molecule in various structure visualization tool.	5:23	PDB	Protein Databases \& Analysis
53	Protein Symmetry	- Description of protein symmetry page of Protein Data Bank (PDB). - Visualization and analysis of protein of interest.	2:34	PDB	Protein Databases \& Analysis
54	Introduction to Phytozome	- A detailed introduction to Phytozome genome browser. - Describes different features and services provided by Phytozome. - Retrieval of dataset of plant genome through Phytozome.	9:38	Phytozome	Biological Databases
55	Interpret Plant Genome Reocrds	- Retrieval of a particular plant genome dataset through Phytozome database. - Description of information of plant genome provided by Phytozome database.	9:06	Phytozome	Biological Databases
56	Keyword or BLAST Search in a Plant Genome	- Searching effciently through keyword(s) on Phytozome database. - Describes different parameters to analyze the results. - BLAST search on a particular species in the Phytozome.	15:58	Phytozome	Biological Databases
57	Visualize a Plant Genome using JBrowse	- Visualization of plant genome using Phytozome database. - Description of analysis options. - Plotting VISTA plots for visualization of plant genome.	17:38	Phytozome	Biological Databases

58	Download an Entire Plant Genome \& Proteome	- Retrieval and downloading a particular genome or proteome using Phytozome database. - Describes different ways to retrieve genome through Phytozome. - Analysis of dataset files for a particular species and their information.	26:41:00	Phytozome	Biological Databases
59	Gene Expression Omnibus (GEO) Database	- Introduction to Gene Expression Omnibus Database hosted by NCBI and it's Goal. - Describes the subdatabases and the kind of data they store.	9:15	NCBI	Biological Databases
60	Gene Expression Omnibus (GEO) Platforms	- Elaborated introduction to GEO 'Platform' repository. - Look through the data it stores and analyze an entry.	5:42	NCBI	Biological Databases
61	Gene Expression Omnibus (GEO) Samples	- Elaborated introduction to GEO 'Sample' repository. - Look through the data it stores and analyze an entry.	4:15	NCBI	Biological Databases
62	Gene Expression Omnibus (GEO) Datasets	- Introduction to Datasets of biologically and statistically comparable GEO Samples and forms. - Look through the data it stores and analyze an entry.	4:44	NCBI	Biological Databases
63	Gene Expression Omnibus (GEO) Series	- Elaborated introduction to GEO 'Series' repository. - Look through the data it stores and analyze an entry's record.	4:00	NCBI	Biological Databases
64	Regulation	- A detailed introduction of a subdatabase of ENSEMBL, Regulation. - Comprehension of the regulatory elements influencing the query gene.	4:18	ENSEMBL	Biological Databases
65	UniProt BLAST \& Protein Database Searching	- Searching a query against the entire UniProt databse using UniProt BLAST - Detailed analysis of local similarity, functional and evolutionary relationship between different sequences	12:32	UniProt	Protein Databases \& Analysis
66	ID Mapping $\underset{\text { Easier }}{\text { Eaking Analysis }}$	- Introduction to ID Mapping tool provided by UniProt. - ID mapping of different types of identifiers and batch search with UniProt IDs. - Convert UniProt IDs to another type of database ID utilizing this tool.	7:17	UniProt	Protein Databases \& Analysis
67	PROSITE	- Introduction to protein domain, families and functional sites database , PROSITE. - Analyze various informative sections provided by the documentation page.	13:46	Protein Families Database	Protein Databases \& Analysis
68	Pfam	- Detailed introduction of a database of curated protein families, Pfam. - Analyze a protein and retrieve significant information related to that protein.	15:55	Protein Families Database	Protein Databases \& Analysis
69	STRING	- Introduction to protein-protein iInteraction database, STRING. - Understading of protein interaction network through analyzing the query protein result and visualization.	13:16	PPI Database	PPI Database

Sr. No	Videos	Description	Duration	Catagory	Main Category
	Segment 2: Understanding Bioinformatics				
1	FASTA (Sequence Format)	- Understading of FASTA format, its syntax and extenions of FASTA. - Analyzing a particular sequence in FASTA format.	6:13	Sequence File Format	Bioinformatics File Formats
2	GenBank (Sequence Annotation Format)	- Description of Genbank format and its syntax. - Organizes and stores the sequence and its annotation together.	7:08	Sequence File Format	Bioinformatics File Formats
3	BAM	- Introduction to Binary Alignment Map (BAM). - Description of format and extension of BAM and its practical uses.	9:06	Sequence File Format	Bioinformatics File Formats
4	SAM	- Introduction to Sequence Alignment Map (SAM). - Description of format and extension of SAM, its constitues and practical uses.	9:06	Sequence File Format	Bioinformatics File Formats
5	Gene File Format/Gene Transfer Format	- Introduction to Gene Feature Format/Gene Transfer Format. - Analyzing features of biological data through GFF/GTF.	11:06	Sequence File Format	Bioinformatics File Formats
6	$\begin{gathered} \text { BED } \\ \text { (Gene Structure Format) } \end{gathered}$	- Introduction to BED file and its syntax. - Annotation of biological data through BED file.	4:26	Sequence File Format	Bioinformatics File Formats
7	PHYLIP (Alignment Format)	- Introduction to PHYLIP alignment format and its syntax. - Describes the rules for representing sequences and uses of PHYLIP format.	4:34	Sequence File Format	Bioinformatics File Formats
8	$\begin{gathered} \text { MEGA } \\ \text { (Alignment Format) } \end{gathered}$	- Introduction to MEGA file format, a multiple sequence alignment format and its syntax. - Rules for representing sequences within MEGA format and its uses. - Exporting an alignment file from the MEGA tool in the MEGA format.	5:32	Sequence Alignment File Format	Bioinformatics File Formats
9	CLUSTAL (Alignment Format)	- Introduction to Clustal Omega alignment format and its syntax. - Describes the rules for representing sequences and uses of Clustal alignment format.	5:07	Sequence Alignment File Format	Bioinformatics File Formats
10	STOCKHOLM (Alignment Format)	- Introduction to STOCKHOLM alignment format and its syntax. - Describes the rules for representing sequences and uses of STOCKHOLM alignment format.	3:10	Sequence Alignment File Format	Bioinformatics File Formats

Sequence Alignment File

 Format| Sr. No | Videos | Description | Duration | Catagory | Main Category |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | Segment 3: Sequence and Biological Data Analysis | | | | |
| 1 | Clustal Omega | - Introduction to Clustal Omega, a multiple seqeunce alignment tool.
 - Procedure to align multiple sequence using Clustal Omega.
 - Interpretation of the output final alignment. | 19:18 | Multiple
 Sequence
 Alignment | Sequence Alignment \& Analysis |
| 2 | MUSCLE | - Introduction to MUSCLE tool.
 - Procedure to align multiple sequences and interpretation of final output alignments. | 21:07 | Multiple
 Sequence
 Alignment | Sequence Alignment \& Analysis |
| 3 | TCoffee | - Introduction to T-Coffee, a multiple sequence alignment tool and its characteristics.
 - Analyzing multiple sequence alignment (MSA) on T-Coffee.
 - Interpretation of alignment results and generating phylogenetic tree on MEGA. | 8:37 | Multiple Sequence Alignment | Sequence Alignment \& Analysis |
| 4 | Mafft | - Introduction to Mafft, multiple sequence
 alignment program.
 - Analyzing fastest multiple sequence alignment (MSA) on Mafft.
 - Provides various commands to install, and utilize the MAFFT tool on Linux OS | 8:22 | Multiple
 Sequence
 Alignment | Sequence Alignment \& Analysis |
| 5 | Jalview | - Introduction to Jalview tool.
 - Analysis and visualization of MSA through Jalview.
 - Generating phylogenetic tree an PCA using Jalview. | 13:42 | Multiple
 Sequence
 Alignment | Sequence Alignment \& Analysis |
| 6 | NEEDLE | - Introduction to EMBOSS Needle, a pairwise alignment tool.
 - Procedure to perform and analyse global alignment and track the optimum seqeunce. | 20:02 | Pairwise Sequence Alignment | Sequence Alignment \& Analysis |
| 7 | WATER | - Introduction to EMBOSS Needle, a pairwise alignment tool.
 - Procedure to perform and analyse local alignment and how NeedlemanWunsch algorithm works. | 9:10 | Pairwise
 Sequence
 Alignment | Sequence Alignment \& Analysis |
| 8 | SignalP | - Introduction of SignalP tool.
 - Predicton of signal peptide from protein sequence. | 7:57 | Protein
 Analysis | Protein Databases \& Analysis |

9	TargetP	- Introduction to TargetP server. - Prediction and detailed analysis of Mitochondrial transfer peptide through TargetP.	9:21	Protein Analysis	Protein Databases \& Analysis
10	Aln2Plot	- Introduction to Aln2Plot tool. - Generates graphical plots of hydrophobicity and side chain volumes for two or more query proteins using the Aln2Plot tool.	2:30	Protein Analysis	Protein Databases \& Analysis
11	DeepCoil	- Introduction to a web based tool, DeepCoil. - Prediction of the coiled coil domain regions within a query protein sequence.	3:22	Protein Analysis	Protein Databases \& Analysis
12	HHrepID	- Introduction to HHrepID, a web-based tool for the prediction of secondary structures of the protein. - Find repetitive regions within a query protein sequence using the HHrepID tool.	5:15	Protein Analysis	Protein Databases \& Analysis
13	MARCOIL	- Introduction to Marcoil, an HMM for the recognition of proteins with a CCD. • Analysis and prediction of potential coiled-coil domains in protein sequences.	4:05	Protein Analysis	Protein Databases \& Analysis
14	REPPER	- Introduction to REPPER to analyses regions with short gapless REPeats in protein sequences. - Analysis of output that is complemented by coiled coil prediction (COILS) and optionally by secondary structure prediction (PSIPRED).	2:25	Protein Analysis	Protein Databases \& Analysis
15	HMMER	- Introduction of HMMER; hidden Markov model based database for protein profiling. - Retrieve the sequence homologs of the query protein using the HMM profile method and it's elaborated analysis.	13:16	Motif \& Domain Analysis	Protein Databases \& Analysis
16	SMART: Finding Domains in Proteins	- Introduction of SMART; Simple Modular Architecture Research Tool for the identification and analysis of protein domains. - Detection of protein domains from the multiple sequence alignments of proteins.	6:44	Motif \& Domain Analysis	Protein Databases \& Analysis
17	ScanProsite	- Establishment of ScanProssite, an improved version of the web-based tool provided by PROSITE. - Scan proteins for matches against the PROSITE collection of motifs as well as against your own patterns.	7:36	Motif \& Domain Analysis	Protein Databases \& Analysis

18	MEGA	- Introduction to Phylogenetics and MEGA software for phylogenetic analysis. - Multiple sequence analysis through MEGA software. - Generating phylogenetic trees with different methods through MEGA.	21:20	Phylogenetic Analysis \& tools	Phylogenetic Analysis
19	FigTree	- Introduction to FigTree and its purposes. - Generating a punlication quality figure out of phylogenetic tree data. - Defines parameters to make tree visually interactive and well anotated.	21:26	Phylogenetic Analysis \& tools	Phylogenetic Analysis
20	iTOL	- Introduction to iTOL, a phylogenetic tree viewer tool. - Creating a high resolution picture out of phylogenetic tree data using iTOL - Editing phylogenetic tree and making it visually interactive.	13:42	Phylogenetic Analysis \& tools	Phylogenetic Analysis

Sr. No	Videos	Description	Duration	Catagory	Main Category
	Segment 4: Predictive Bioinformatics				
1	Prodigal	- Utilization of Prodigal software for gene prediction. - Describes the properties, modes and parameters of Prodigal. - Analysis of a particular genome and predicted genes out of it utilizing prodigal software.	25:46:00	Gene Prediction	Gene Prediction
2	GeneMark	- Utilization of GeneMark tool for gene prediction. - Describes GeneMark family of programs. - Gene prediction analysis using GeneMark. hmm.	16:51	Gene Prediction	Gene Prediction
3	GenScan	- Utilization of GenScan webserver for gene prediction. - Describes the parameters of GenScan. - Analysis of a particluar nucleotide sequence and predicting gene out of it.	10:40	Gene Prediction	Gene Prediction
4	AUGUSTUS	- Utilization of AUGUSTUS tool for gene prediction and annotation. - Describes the parameters for utilizing the AUGUSTUS. - Analysis of the result provided by AUGUSTUS and step-by-step procedure to find a novel gene.	17:27	Gene Prediction	Gene Prediction
5	Ali2D	- Use of Ali2D tool for secondary structure prediction. - Detailed analysis of the secondary structure prediction results.	4:09	Secondary Structure Prediction	Secondary Structure Prediction
6	Quick2D	- Use of Quick2D tool for secondary structure prediction. - Detailed analysis and information retrieval of the secondary structure features like alpha-helices, extended beta-sheets, transmembrane helices and disorder regions of the query protein.	4:33	Secondary Structure Prediction	Secondary Structure Prediction
7	Jpred	- Use of Jpred server for secondary structure prediction. - A detailed analysis of secondary structure features' information of the query protein sequence.	4:54	Secondary Structure Prediction	Secondary Structure Prediction

8	MODELLER	- Introduction to Modeller tool and its uses. - Procedure to predict a protein structure through Modeller. - Evaluation method of MODELLER to find out the most optimal and good protein structure predicted.	36:13:00	3D Structure Prediction	3D Structure Prediction
9	ROBETTA	- Introduction to Robetta, a protein structure prediction tool. - Procedure to predict and analyse protein structure. - Prediction of protein structure for a query sequence using ab-initio techniques.	14:39	3D Structure Prediction	3D Structure Prediction
10	M4T	- Introduction to M4T, a protein structure prediction tool. - Procedure to predict the protein structure from a Target protein sequence, using the M4T server.	9:26	3D Structure Prediction	3D Structure Prediction
11	SwissModel	- Introduction to homology modeling and SwissModel, a homology modeling server. - Prediction of protein structure for a target sequence using SwissModel. - Defines parameters for a good protein structure and analysis of resulting protein.	12:52	3D Structure Prediction	3D Structure Prediction
12	PEPFOLD 3 peptide structure modeling	- Introduction to PEPFOLD_3 server and its purpose. - Generating 3D models of a peptide using the query sequence. - Defines parameters and analysis of results.	13:14	3D Structure Prediction	3D Structure Prediction
13	HHPRED	- Basic description of HHPred tool and its purpose. - Procedure to predict the protein structure from target sequence through HHPred tool. - Selecting a particular template structure for homology modeling of target protein using HHPred tool.	14:09	3D Structure Prediction	3D Structure Prediction
14	IntFOLD	- Introduction to IntFOLD and its purpose. - Procedure to predict the protein structure from target protein sequence, using the IntFOLD server. - Interpretation of results.	8:41	3D Structure Prediction	3D Structure Prediction

15	Homology Modeling Using MOE	- Introduction to homology modeling and Molecular Operating Enviroment (MOE) tool. - Generating a homology 3D model of a target protein using MOE. - Analysis of results and how to align the two structures of the protein using the MOE tool.	12:34	3D Structure Prediction	3D Structure Prediction
16	PROSA	- Introduction to ProSA server. - Procedure to evaluate protein model predicted using different methods. - Analysis of three different structures of the protein predicted from three different tools for their comparative analysis.	10:05	3D Structure Evaluation	3D Structure Evaluation
17	SAVES	- Introduction to SAVES tool and its purpose. - Procedure to evaluate a predicted protein model using Saves server. - Analysis of Ramachandran plot generated by the SAVES server for the predicted query protein structure.	5:31	3D Structure Evaluation	3D Structure Evaluation
18	WhatCheck	- Introduction to WhatCheck, a protein model evaluation tool. - Utilization of WhatCeck tool for protein model evaluation. - Analysis and implication of results for protein structure evaluation.	8:40	3D Structure Evaluation	3D Structure Evaluation
19	ERRAT	- Introduction to ERRAT, a protein model evaluation tool. - Procedure to evaluate experimentally determined protein model. - Analysis and interpretation of results to evaluate the best model.	6:44	3D Structure Evaluation	3D Structure Evaluation
20	Verify3D	- Introduction to Verify3D, a protein model evaluation tool. - Procedure to evaluate a protein model using the web server of Verify3D. - Interpretation and analysis of the results provided by Verify3D	8:31	3D Structure Evaluation	3D Structure Evaluation
21	RAMPAGE	- Introduction to RAMPAGE, a protein model evaluation tool. - Procedure to evaluate protein model based on Ramachandran plotting by RAMPAGE. - Interpretation of Ramachandran plotting to select the best model.	3:29	3D Structure Evaluation	3D Structure Evaluation

22	ProCheck	- Introduction to ProCheck, a protein model evaluation tool. - Utilization of ProCheck to check quality of protein model based on certain parameters. - Interpretation of results to select the best model.	12:36	3D Structure Evaluation	3D Structure Evaluation
23	Chimera	- Introduction to UCSC Chimera and its uses. - Visualization and analysis of a protein 3D model using Chimera. - Comparing and analysis of more than one protein structure for research purposes.	25:23:00	3D Structure Visualization	3D Structure Visualization
24	PyMol	- Introduction to PyMol. - Defines parameters to visualize and analyze the protein 3D model. - Commands used in PyMol to visualize and manipulate protein 3D model.	40:48:00	3D Structure Visualization	3D Structure Visualization
25	Molecular Docking of Protein Ligand using MOE	- Introduction to Molecular Operating Environment (MOE) and molecular docking. - Preparation of the receptor for docking. - Searching active site residues in receptor and ligand preparation. - Docking of receptor and ligand molecules and analysis of the docked complex.	9:23	Molecular Docking	Molecular Docking
26	Protein-Protein Docking Using MOE	- Basic description of Molecular Operating Environment (MOE) software and protein-protein docking. - Procedure to dock a ligand protein against a receptor protein (protein- protein docking) using the MOE software. - Defines parameters to select the best docking conformation for a specific drug candidate.	11:38	Molecular Docking	Molecular Docking
27	Structure Based Drug Desinging Using MOE	- Introduction to MOE software and structure based drug designing. - Procedure to design a drug based on knowledge of 3D structure of biological target. - Defines parameters and modifications to make the ligand molecule an effective drug candidate.	16:19	Molecular Docking	Molecular Docking

28	Docking a Library of Compounds using MOE	- Introduction to Molecular Operating Environment (MOE) software and its uses. - Procedure of docking a library of compounds against a particular protein of interest using MOE software. - Defines parameters to analyse the best docking conformation to indicate the stable addict.	19:48	Molecular Docking	Molecular Docking
29	SwissDock Protein Ligand Docking	- Introduction to SwissDock server and its purpose. - Procedure to dock a ligand compound against a receptor molecule (Protein-Ligand Docking). - Defines parameters to be selected for docking process. - Creating ligand and receptor files in the required formats.	19:16	Molecular Docking	Molecular Docking
30	ZDock ProteinProtein/ Ligand Docking	- Introduction to ZDOCK server and its purpose. - Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the ZDOCK server. - Procedure to dock a protein molecule against its multimers using the M-ZDOCK program and analysis of results.	19:35	Molecular Docking	Molecular Docking
31	PatchDock ProteinProtein Docking	- Introduction to PatchDock server and its purpose. - Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the PatchDock server. - Analysis of results and the best complexes refined by FireDock server.	17:39	Molecular Docking	Molecular Docking
32	ClusPro ProteinProtein Docking	- Introduction to ClusPro server and its purpose. - Utilization of various features of ClusPro to perform protein-protein doc king. - Describes advanced functionalities offered by ClusPro to select the best docked complex.	21:44	Molecular Docking	Molecular Docking

33	MDockPEP protein peptide docking	- Introduction to MDockPEP server and its uses. - Procedure to dock a receptor protein molecule against the ligand peptide molecule (Protein-Peptide docking) using the MDockPeP server. - Description to prepare the receptor file for docking process and analysis of the results.	10:06	Molecular Docking	Molecular Docking
34	PDBepisa Docking Complex Evaluation	- Introduction to PDBePISA server and its purpose. - Evaluation of protein-protein and protein- ligand docked complex through PDBePISA server. - Defines parameters for an optimal docking complex model.	23:27	Docking Complex Evaluation	Docking Complex Evaluation
35	PDBsum Docking Complex Evaluation	- Introduction to PDBsum server and its uses. - Procedure to evaluate protein-protein and protein-ligand docking complex using PDBsum server. - Analysis and interpretation of evaluation results.	18:49	Docking Complex Evaluation	Docking Complex Evaluation
36	SwissADME	- Introduction to SwissADME server and its purpose. - Evaluation of pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules or ligands. - Defines parameters for an optimal docking complex model.	15:31	Docking Complex Evaluation	Docking Complex Evaluation

Sr. No	Videos	Description	Duration	Catagory	Main Category
	Segment 5: Bioinformatics Scripting in Linux, Python and R				
1	Introduction to Python and Python Installation	- A detailed introduction to Python language and its Installation. - Advantages of Python over other programming languages. - Uses of Python in Bioinformatics.	8:25	Introduction	Python
2	Why Python in Bioinformatics \& Code editor selection	- Importance of Python in Bioinformatics. - Description of different code editors and their importance like Atom, PyCharm and Visual Studio Code. - Advantages of Visual Studio Code as a code editor.	9:16	Introduction	Python
3	Basic Input and output	- Description of Basic input and output function in Python language. - Example code to print out values and characters. - Getting intput from the user and printing it out.	15:37	Introduction	Python
4	Mathematical Operations	- Description of different operators to perform that perform vaious operations in Python. - Description of different ways to perform operations in Python shell and script mode. - Description of methods to perform the operations on variables in script mode.	7:20	Introduction	Python
5	Comments	- Introduction to comments and its use. - Description of importance of comments in a Python script. - Example code to make comments in Python script.	5:42	Introduction	Python
6	Strings	- Introduction to Strings within Python language. - Utilization of Strings with different built-in functions in Python. - Describes the built-in functions that are helpful in Bioinformatics.	21:51	Iterable Objects	Python
7	Lists	- Introduction to lists in Python language. - Creating and modifying lists within Python code. - Using list with Python's built-in functions.	28:47:00	Iterable Objects	Python
8	Tuples	- Description of lists and how they can be called with built-in functions. - Example code for accessing and concatenating lists. - Description Tuples within Python code and how thay can be used to keep data unmanipulated.	10:37:00	Iterable Objects	Python

9	Dictionaries	- Introduction to Dictionaries and their importance in Python. - Describes the syntax of declaring a dictionary. - Describes different built-in functions to access the data in a dictionary.	10:57	Iterable Objects	Python
10	Sets	- Introduction to sets and thier use to analyze Bioinformatics data. - Example code of using sets with Python's built-in functions. - Describes various purposes of sets.	7:35	Iterable Objects	Python
11	If-Else	- Introduction to if-else statement and its syntax. - Example code of how if-else statement is executed. - Describes importance of if-else statement to perform various tasks in Bioinformatics.	9:19	Control Flow	Python
12	For Loop and Calculation of Mol. Weight of Protein)	- Introduction to For loop within Python. - Describes use and importance of For loop in Python. - Example code to calculate molecular weight of a protein using For loop.	10:56	Control Flow	Python
13	While Loop and Code Generation	- Introduction to While loop within Python and its importance. - Example code to get the codons from a DNA sequence using while loop. - Describes usage of break statement in loops.	9:37	Control Flow	Python
14	Estimation of Net Charge and Protein	- Example code to estimate the net charge of protein using Python script. - Calculation of net charge of protein using For loop in Python script.	4:36	Biological Data Analysis	Python
15	Reading Normal and Bioinformatics Files (FASTA)	- Describe Python's built-in functions for reading files. - Define Python's file reading methods. - Describes script to read data from files by providing relative path and absolute path.	13:45	File Handling	Python
16	Writing Normal and Bioinformatics Files (FASTA)	- Describe Python's built-in functions for writing files. - Define Python's file writing methods. - Describes script to write data; to open and create files.	7:17	File Handling	Python
17	CSV (A special kind of file in Bioinformatics)	- Introduction to CSV file and its importance. - Describes the structure of CSV file. - Describes script to read a particular CSV file.	8:41	File Handling	Python

18	File Handling OS Module	- Introduction to Python's built-in OS module. - Describes functions included in OS module utilized within code. - Describes script to access the functions of os module.	31:47:00	File Handling	Python
19	```Consolidate (Merge) Multiple DNA or Protein Sequences into one FASTA file```	- Describes how Python modules utilized to save multiple sequences files into one FASTA file. - Describes Python script to consolidate multiple DNA or Protein sequences into one FASTA file.	9:24	File Handling	Python
20	Estimating Net Charge of several Proteins at once	- Describes the use of Python script to calculate net charge of protein. - Calculation of net charge of thousands of proteins using built-in functions. - Describes the use of nested loop to count the sequences.	7:13	Biological Data Analysis	Python
21	With: A secure way to open Files	- Introduction to 'With' statement and its syntax within Python. - Creating files using 'With' statement and its advantages over other conventional ways. - Describes Python script to create file with and without using 'With' statement.	8:50	Functions \& Modules	Python
22	Functions	- Introduction to functions, its syntax and its types with Python. - Describes script to create functions and using them to analyze data. - Describes different ways of returning values from the functions into the main program.	26:41:00	Functions \& Modules	Python
23	Modules	- Introduction to modules and their uses within Python. - Procedure for installation of modules. - Describes Python script for imporing, creating and testing modules.	16:50	Functions \& Modules	Python
24	Error Handling	- Introduction to error handling in Python. - Describes different keywords for error handling. - Describes Python script using error handling keywords to handle possible errors.	15:31	Error Handling	Python
25	Introduction to BioPython \& Installation	- A detailed introduction to BioPython package and its purpose. - Describes the installation of BioPython package. - Describes various tasks that can be performed using BioPython and it modules.	10:18	Introduction	BioPython

26	Bio.Seq Create a Seq Object	- Introduction to Bio.Seq module of BioPython. - Importing Seq objects module from Bio.Seq module. - Utilization of Seq() function in program.	7:38	Sequence Analysis	BioPython
27	Bio.Seq Seq Object Behaves Like a String	- Introduction to Bio.Seq module of BioPython. - Describes Seq object behaves like the string data type in Python. - Describes manipulations applied on Seq objects in BioPython.	9:54	Sequence Analysis	BioPython
28	Bio.Seq Central Dogma in Play Through Python	- Introduction to Bio. Seq module of BioPython. - Utilization of Bio.Seq module to generate small Python script. - Converting a particular sequence into its complementary, non complementary, transcripted and backtranscripted sequences by built-in functions of Bio.Seq.	8:41	Sequence Analysis	BioPython
29	Bio.Seq Unkown \& Mutable Sequences	- Introduction to Bio. Seq module of BioPython. - Importing UnknownSeq and MutableSeq objects from the Bio.Seq class. - Utilization of MutableSeq() and UnknownSeq() functions in a BioPython script to perform different tasks.	6:53	Sequence Analysis	BioPython
30	Bio.Alphabet Understanding the Alphabets of Biology	- Introduction to Bio.Alphabet module of BioPython. - Utilization of Bio.Alphabet class to figure the alphabets that underlie within the sequences of interest.	7:37	Sequence Analysis	BioPython
31	Bio.Alphabet IUPAC and Types of Sequence Representations	- Introduction to BioAlphabet IUPAC module. - Describes types of sequence representation. - Describes functionality provided by IUPAC.	10:34	Sequence Analysis	BioPython
32	Bio.Alphabet Concatenation of Multiple Seq Records Using Generic Alphabets	- Intriduction to BioAlphabet class of BioPython. - Utilization of generic_alphabets in BioAlphabet. - Concatenation of multiple seq records into single object.	9:47	Sequence Analysis	BioPython
33	SeqRecord Creating Seq Records	- Introduction to SeqRecord module of Bio. SeqRecord class of BioPython. - Creating sequence records that resonate the sequence records of GenBank, FASTA, EMBL(EBI), etc.	12:27	Sequence Analysis	BioPython
34	SeqRecords \& FASTA	- Description of SeqRecord module in BioPython. - Utilization of SeqRecord to demonstrate the representation of the fasta file within the BioPython.	4:35	Sequence Analysis	BioPython
35	SeqRecords \& GenBank	- Description of SeqRecord module in the BioPython. - Utilization of SeqRecord to demonstrate the representation of the GenBank file within the BioPython.	$3: 28$	Sequence Analysis	BioPython

36	SeqRecord Formatting Records	- Introduction to SeqRecord module in BioPython. - Utilization of formatting features of the SeqRecord.	3:47	Sequence Analysis	BioPython
37	SeqRecord Comparison \& Reading Multiple FASTA Files from Directory	- Introduction of the SeqRecord module in BioPython. - Checking redundancy of files using SeqRecord class. - Importing modules and subclasses to make the code efficient.	5:47	Sequence Analysis	BioPython
38	SeqIO Reading a Sequence File	- Introduction to SeqIO module of BioPython package. - Description of SeqIO.read() function of SeqIO module. - Reading a FASTA file and a GenBank file utilizing the SeqIo.read() function.	10:32	Sequence Data Parsing	BioPython
39	SeqIO Parsing a Sequence File	- Introduction to SeqIO module of BioPython. - Description of SeqIO.parse() function of SeqIO module. - Converting a single file containing multiple sequences into an iterator list of records.	7:16	Sequence Data Parsing	BioPython
40	SeqIO Extracting Annotations and Pattern-wise Sequence Data Extraction	- Description of SeqIO module of BioPython. - Creating FASTA file of the annotations, IDs, Descriptions and other details for a particular organism from the GenBank file.	10:35	Sequence Data Extraction	BioPython
41	SeqIO Parsing a Compressed Sequence File \& Creating a Dictionary of Sequences	- Description of SeqIO module in BioPython. - Parsing a compressed sequence file. - Creating a dictionary of sequences.	6:10	Sequence Data Parsing	BioPython
42	SeqIO - Write Sequences and SeqRecords Into Files	- Description of SeqIO module of the BioPython. - Creating new sequence files in any format using the SeqIO module. - Writing multiple sequences in a single file and multiple sequences in separate files.	11:42	Sequence Data Parsing	BioPython
43	AlignIO - Reading and Parsing a Multiple Sequence Alignment File	- Introduction to AlignIO module in BioPython. - Reading and parsing multiple sequence alignment file.	8:19	Alignment Parsing and Analysis	BioPython
44	```AlignIO - Writing Alignments and Multiple Sequence Alignment Records```	- Introduction to AlignIO module of BioPython. - Writing alignments and multiple sequence alignment records.	5:28	Alignment Parsing and Analysis	BioPython
45	AlignIO - Information Mapping of Alignments	- Description of the AlignIO module within BioPython Package. - Information mapping of alignments.	2:33	Alignment Parsing and Analysis	BioPython
46	AlignIO - Format Alignments	- Description of the AlignIO module in the BioPython package. - Utilization of AlignIO.read() function to read a file into a particular format. - Converting the input format into other formats at the run time.	3:55	Alignment Parsing and Analysis	BioPython

47	AlignIO - Conversion of Alignment Formats	- Introduction to AlignIO module of the BioPython. - Converting file of a particular format into different formats of multiple sequence alignments.	4:01	Alignment Parsing and Analysis	BioPython
48	AlignIo - Slicing Alignments	- Description of AlignIO module of BioPython package. - Reading a multiple sequence alignment file in a particular format. - Truncating a specific regions from the entire alignment.	6:05	Alignment Parsing and Analysis	BioPython
49	AlignIo - Manipulating Alignments	- Describes the AlignIO module of BioPython package. - Reading a Multiple Sequence Alignment file of a particular format. - Manipulating the truncated alignments and the entire alignment.	2:57	Alignment Parsing and Analysis	BioPython
50	AlignIo - Clustalw Python Wrapper - Align Multiple Sequences	- Describes the AlignIO module of the BioPython package. - Utilization of the ClustalW command-line software within BioPython. - Generating a guide tree of the aligned sequences using the Phylo module.	7:47	Alignment Parsing and Analysis	BioPython
51	AlignIo - Pairwise2 - Align Two Sequences	- Describes AlignIO module within BioPython. - Performs pairwise sequence alignment on two sequences using the pairwise2 function. - Converting the alignment files into SeqRecords and the SeqRecords into separate files.	7:31	Alignment Parsing and Analysis	BioPython
52	Bio.Blast - Querying NCBI BLAST Through Python	- Introduction to Bio.Blast module of BioPython package. - Querying NCBI BLAST tool using via Python using the Bio.Blast module of the BioPython packages.	11:41	BLAST Database Searching	BioPython
53	Bio. Blast - Parsing BLAST Results	- Introduction to Bio.Blast module of BioPython package. - Parsing the BLAST results in Python using the Bio.Blast module to create a separate file of the results.	14:51	Parsing BLAST results	BioPython
54	Bio.Entrez - Accessing ENTREZ Using Python	- Introduction to Bio.Entrez module of BioPython package. - Retrieving the information about all the databases of NCBI. - Performs a particular search within a single database utilizing the Entrez module.	9:32	Biological Data Retrieval	BioPython
55	Bio.Entrez - Use ESearch to Search the Entrez Databases	- Description of Bio.Entrez module of BioPython. - Searching for a particular query in various databases of Entrez NCBI using the Entrez.esearch function	8:20	Biological Data Retrieval	BioPython

56	Bio.Entrez - Use ESummary to Get Summary of Your Accessions	- Description of the Bio.Entrez module of BioPython. - Retrieval of information related to a particular query from a particular database using esummary function.	8:59	Biological Data Retrieval	BioPython
57	Bio.Entrez - Use EFetch to Download Complete Records	- Elaborates Bio.Entrez module of BioPython. - Retrieval a particular query in various databases of Entrez NCBI using the Entrez.efetch() function. - Parsing the fetched information into a separate file using the SeqIO.read() function.	13:56	Biological Data Retrieval	BioPython
58	Bio.Entrez - Use ELink to Search for Database Links of Records	- Describes Bio.Entrez module. - Utilization of the elink() function of Bio. Entrez module. - Retrieval of linked datasets related to a particular NCBI accession ID.	3:41	Biological Data Retrieval	BioPython
59	Bio.Entrez - Use EGQuery to Do Global Quries for Search Counts	- Description of Bio.Entrez module. - Retrieving the count for a particular query/keyword against all databases of Entrez using the egquery() function. - Retrieving the count against a particular database by looping over the results.	7:24	Biological Data Retrieval	BioPython
60	Bio.Entrez - Use ESpell to Get Correct Spellings for Your Search Terms	- Explains Bio.Entrex module and its functions. - Spelling correction in the query keywords using the Entrez.espell() function.	5:21	Biological Data Retrieval	BioPython
61	Bio.Entrez - Download GenBank and Entrez Records	- Intrduction to Bio.Entrez module. - Downloading multiple sequences from the GenBank database into a single file using some patches of code.	14:17	Biological Data Retrieval	BioPython
63	Bio.Phylo - Writing Out Phylogenetic Data	- Intrduction to Bio. Phylo module. - Writing the phylogenetic data in any phylogenetic tree format. - Writing multiple phylogenetic tree files into one single file.	4:04	Phylogenetic Analysis	BioPython
64	Bio.Phylo - Calculating Distance Matrix Between Sequences for Phylogenetic Analysis	- Intrduction to Bio. Phylo module. - Writing the phylogenetic data in any phylogenetic tree format. - Writing multiple phylogenetic tree files into one single file.	4:18	Phylogenetic Analysis	BioPython
65	Bio.Entrez - Taxonomy Database Searching	- Intrduction to Bio.Entrez module. - Searching Taxonomy database of NCBI using Bio. Entrez module of BioPython. - Retrieveing the data about the lineage of an organism from the Taxonomy database of NCBI.	7:05	Biological Data Retrieval	BioPython
66	Bio.Entrez - Download PubMed Articles	- Introduction to Bio.Entrez module. - Downloading research articles and literature from the PubMed database using some patches of code.	8:28	Biological Data Retrieval	BioPython

67	Bio.PDB - Parsing Protein Structure Files	- Intrduction to Bio.PDB module. - Parsing a pdb structure file in BioPython and extracting precise and specific amount of information about a particular keyword.	11:59	Parsing a PDB Structure file	BioPython
68	Bio.Phylo - Reading Phylogenetic Trees	- Intrduction to Bio. Phylo module. - Reading phylogenetic tree files in any format in BioPython.	6:28	Phylogenetic Analysis	BioPython
69	Bio. Phylo - Converting Phylogenetic Tree Data Formats	- Intrduction to Bio. Phylo module. - Converting one phylogenetic tree format into another tree format using various functions of Bio. Phylo module of BioPython	$3: 28$	Phylogenetic Analysis	BioPython
70	Bio.Phylo - Printing Out Phylogenetic Tree in ASCII	- Intrduction to Bio. Phylo module. - Convrting a phylogentic tree format into ASCII representation.	2:17	Phylogenetic Analysis	BioPython
71	Bio.Phylo - Visualization and Manipulation of Phylogenetic Trees	- Intrduction to Bio.Phylo module. - Visualizing and manipulating a phylogenetic tree using various built-in functions of Bio. Phylo module.	9:36	Phylogenetic Analysis	BioPython
72	Introduction to R in Bioinformatics \& R Installation	- A detailed introduction to R language and importance of R language in Bioinformatics. - Describes the procedure of installation of R.	9:47	Introduction	R
73	The R Studio Interface Explaination	- Introduction to R studio and basic description of R studio interface. - Describes windows and tabs of R studio in details.	6:23	Introduction	R
74	Comments	- Introduction to comments in R language. - Describes purpose and advantages of adding comments in R language. - Describes different ways to add comments in R script.	4:16	Introduction	R
75	Variable Declaration \& Objects	- Description of Declaraing variables in R. - Describes mathmatical operators that can be applied on variables.	5:24	Variables \& Functions	R
76	Built-in Functions and ARGS	- Introduction to built-in functions in R. - Describes syntax to write the functions in R. - Example code for using different built-in functions of R.	4:31	Variables \& Functions	R
77	Sample \& Replacement	- Description of Sample and replacement in R. - Describes built-in function of R for sample and replacement. - Example code to sample out values randomly and getting independent values by using 'replace' parameter.	9:09	Variables \& Functions	R
78	Write Your Own Functions \& Arguments	- Introduction to user-defined functions and its purpose. - Describes the syntax to write a function in R. - Example code to write the functions in R.	5:39	Variables \& Functions	R
79	Scripts	- Introduction to sripts in R and its importance. - Procedure to create a script in R. - Example code to write a script and describes how it run.	7:36	Variables \& Functions	R

80	Packages	- Introduction to Packages and their purpose in R language. - Accessing packages from Cran R-project website. - Retrieving information related to a particular package in R repository.	4:00	Packages	R
81	install packages	- Procedure to access the packages within R language. - Discuss different methods to install packages such as comman-line, or through CRAN repository.	5:25	Packages	R
82	library \& Initialize Packages	- Description of Libraries in R langiage. - Procedure to initialize packages. - Discuss methods to initialize packages such as command-line or through package tab.	2:27	Packages	R
83	Getting Help with Help Pages	- Description of getting help with help pages in R. - Describes syntax for particular function for getting help. - Describes functions with help commands for their functionality.	3:42	Packages	R
84	Atomic Vectors	- Introduction to atomic vectors in R language. - Example code for creating atomic vectors. - Uses of atomic vectors in R language.	2:42	Vectors \& Data Types	R
85	Doubles	- Introduction to doubles in R language. - Describes double atomic vectors and initializing numeric values in R. - Example code to declare the atomic vectors and store multple values in it.	3:30	Vectors \& Data Types	R
86	Integers	- Introduction to integers in R language. - Declaring integers in RStudio. - Finding datatype of an already existing integers.	3:23	Vectors \& Data Types	R
87	Characters	- Introduction to character datatype in R language. - Describes the use of character datatype in R. - Utilization of variables and storing them into single and multiple character values.	4:43	Vectors \& Data Types	R
88	Logicals	- Introduction to logicals in R language. - Example code to store the logicals in variables.	2:27	Vectors \& Data Types	R
89	Attributes \& Names	- Description of attributes and names in R language. - Describes the use of attributes and names function in R. - Describes script to use these functions.	4:46	Vectors \& Data Types	R

90	Dim \& Dimensions	- Introduction to Dim, a built-in function in R programming. - Creating data in a dimension and changing atomic vector's data into multi-dimensional data. - Importance of dim() function in Bioinformatics.	5:46	Vectors \& Data Types	R
91	Matrix \& Matrices	- Introduction to Matrices in R language. - Purpose of matrix(), a built-in function in R programming. - Describes matrix initiation, customization of matrix rows and columns matrix layout.	4:42	Vectors \& Data Types	R
92	Arrays	- Introduction to arrays datatype in R programming language. - Different way of creating dimensions and multi-dimensions. - Describes kind of function to use for creating dimensional data depends upon the kind of analysis one is working on.	3:42	Vectors \& Data Types	R
93	Class	- Introduction classes in R programming language. - Use of built-in function class() in R programming. - Describe how classes in R represents data's classification.	3:12	Vectors \& Data Types	R
94	Factors	- Introduction to factors in R programming. - Importance of built-in function factor() in R language. - Describes script to categorize data using factor() function in R.	6:40	Vectors \& Data Types	R
95	Coercion	- Introduction to coercion in R language. - Describes to coerce integer data type to character data type using built-in functions in R. - Describes script to coerce one data type to another to make the function work properly.	4:27	Vectors \& Data Types	R
96	Lists	- Introduction to List data type in R language. - Describes how to work with lists in R programming. - Describes script for creating and retrieving lists in R programming.	6:41	Vectors \& Data Types	R
97	Data Frames	- Introduction to data frames in R programming language. - Describes characteristics of data frames. - Creating 2-D table of required data using built-in functions of data frame.	6:30	Biological Data Analysis	R
98	Loading Biological Data	- Importing the biological data in R proramming. - Different ways to import loading biological data. - Better visualization of data sets by loading data into R environment.	7:55	Biological Data Analysis	R

99	Saving Biological Data	- Describes to save CSV file from R using builtin functions of R. - Getting working directive of the file. - Changing working directive of R files.	5:26	Biological Data Analysis	R
100	R Notiation \& Selecting Values from Biological Dataset	- Introduction to R Notation system. - Describes methods for selecting values from biological datasets. - Basic method to introspect data and use it for different analysis.	4:09	Biological Data Analysis	R
101	Positive Integers for Subsetting Biological Dataset (DataFrame)	- Introduction to positive interger for extracting data from dataset in R. - Describes different ways to extract values and save them in new data frame.	5:25	Biological Data Analysis	R
102	Negative Integers for Subsetting Biological Dataset (DataFrame)	- Introduction to negative integers for extracting data from dataset. - Describes different ways to extract values and save them in new data frame.	5:28	Biological Data Analysis	R
103	Zero Notation for Subsetting Biological Dataset (DataFrame)	- Introdcution to zero notation for extracting values from datasets in R. - Describes different ways to extract data utilizing zero notation.	1:09	Biological Data Analysis	R
104	Blank Spaces for Biological Data Subsetting	- Introduction to R notation system and blank spaces to extract data from datasets. - Describes script to extract data from datasets using blank spaces. - Advantages of blank spaces notation in R.	3:20	Biological Data Analysis	R
105	Dollar Signs for Biological Data Subsetting	- Introduction to R notation system and dollar signs notation. - Describes script to extract data from data frames using dollar signs.	2:58	Biological Data Analysis	R
106	Modifying Values in Existing DataFrames/Datasets	- Introduction to R notation system. - Describes script to modify values and creating new values using R notation system.	7:06	Biological Data Analysis	R
107	NA Values in Biological Datasets	- Introduction to NA values in R datasets. - Finding NA values in R datasets. - Describes script to insert NA values in datasets using stats operations.	5:24	Biological Data Analysis	R
108	Figuring Out NA Values in Biological Datasets	- Introduction to NA values in R datasets. - Describes to figure out NA values using builtin funcyions.	2:06	Biological Data Analysis	R
109	Logical Subsetting in Biological Datasets	- Introduction to ligical subsetting in R language and its uses. - Describes various logical operators and their syntax. - Describes script for logical subsetting and its importance in analyzing data in Bioinformatics.	9:45	Biological Data Analysis	R

110	if else Statements	- Introduction to if-else statements in R. - Describes the syntax of if-else statement. - Describes script to utilize these conditional statements in R programming.	4:15	Control Flow	R
111	for Loops \& Biological Data Binding	- Introduction to for loop in R programminf language. - Describes the syntax of for loop and its uses. - Describes script to bind multiple CSV files into a single data frame utilizing for loop.	16:30	Control Flow	R
112	while Loops \& Reading Multiple Biological Datasets	- Introduction to while loop in R programming language. - Describes the syntax of while loop and its uses. - Describes script to read multiple files using the while loop and how it can be utilized to analyse data in Bioinformatics.	16:16	Control Flow	R
113	Introduction to ggplot2 for Biological Datasets	- A detailed introduction to ggplot2 package in R programming. - Describes different ways to install ggplot2 package. - Describes how ggplot2 can be utilized for the visualization to represent the particular dataset	10:46	Data Visualization: ggplot2	R
114	ggplot2: Key components	- Introduction to ggplot2 library in R. - Describes different components and functions of ggplot2 package. - Describes the type of graphics to map against a particular dataset.	8:25	Data Visualization: ggplot2	R
115	ggplot2: Human Mitochondrial Proteome \& Aesthetics (Size, Shape, Color)	- Introduction to ggplot2 library in R programming. - Describes mapping of Biological datasets utilizing ggplot2 package. - Using mitochondrial proteome dataset to visualize data utilizing different functions and components of ggplot2 library.	26:02:00	Data Visualization: ggplot2	R
116	ggplot2: Facetting of Human Genome	- Introduction to ggplot2 library in R programming. - Describes facetting of biological dataset using ggplot2 library. - Describes facetting functions and applying these functions to facet datasets. - Analyzing results of facetting for a particular dataset.	22:25	Data Visualization: ggplot2	R
117	ggplot2: Smooth Out the Biological Data	- Introduction to ggplot2 library in R programming. - Describes smoothing out the biological data in ggplot2 package. - Describes parameters to smooth out the dataset.	8:43	Data Visualization: ggplot2	R

118	ggplot2: Frequency Plots for Human Mitochondrial Information Frequency Mining	- Introduction to ggplot2 library in R programming. - Describes the frequency polygons in ggplot2 package. - Describes the utilization of geom_freqpoly() function to visualize biological dataset.	6:12	Data Visualization: ggplot2	R
119	ggplot2: Bar Charts Human Mitochondrial Knowledge Mining	- Introduction to ggplot2 library in R programming. - Describes the use of bar charts in ggplot2 library. - Describes to utilize the geom_bar() function to visualize the biological dataset.	10:43	Data Visualization: ggplot2	R
128	ggplot2: Boxplots for Human Mitochondrial Proteome	- Introduction to ggplot2 library in R programming. - Creating different boxplots to visualize the biological dataset.	7:55	Data Visualization: ggplot2	R
121	ggplot2 :Histograms for Human Mitochondrial Pattern Finding	- Introduction to ggplot2 library in R programming. - Describes histograms in ggplot2 library or R. - Utilization of geom_histogram() function to visualize biological dataset.	6:02	Data Visualization: ggplot2	R
122	ggplot2: Labels	- Description of ggplot2 package in R. - Visualize data utilizing different functions and components of ggplot2 library. - Changing labels and Finalizing visualizations.	8:41	Data Visualization: ggplot2	R
123	ggplot2: Plot Phylogenetic Trees through ggtree	- Introduction to ggtree package in R. - Generating phylogenetic tree using ggtree library. - Descibes different functions, formats and parameters for generating phylogenetic tree.	5:41	Data Visualization: ggplot2	R
124	Introduction to Linux for Bioinformatics	- Introduction to Unix and linux operating systems. - Difference between Linux and other operating systems. - Advantages and uses of Linux operating systems in Bioinformatics.	22:31	Introduction	Linux
125	cd	- Description of cd command in Linux. - Lists various option for cd command. - Utilization of cd command to change the directive of various files on Linux.	5:03	Managing Files and Directories	Linux
126	cp	- Description of cp command in Linux. - Lists various option for cp command. - Utilization of cp command to copy files and file contents on Linux.	3:43	Managing Files and Directories	Linux
127	1 s	- Description of ls command in Linux. - Lists various option for ls command. - Utilization of ls command for listing files and directories on Linux.	6:45	Managing Files and Directories	Linux

128	mkdir	- Description of mkdir command in Linux. - Lists various option for mkdir command. - Utilization of mkdir command to make directories on Linux.	8:12	Managing Files and Directories	Linux
129	mv	- Description of mv command in Linux. - Lists various option for mv command. - Utilization of mv command moving files quickly on Linux.	5:10	Managing Files and Directories	Linux
130	rm	- Description of rm command in Linux. - Lists various option for rm command. - Utilization of rm command to remove files on Linux.	1:23	Managing Files and Directories	Linux
131	pwd	- Description of pwd command in Linux. - Lists various option for pwd command. - Utilization of pwd command to print working directory on Linux.	1:26	Managing Files and Directories	Linux
132	touch	- Description of touch command in Linux. - Lists various option for touch command. - Utilization of touch command for modifying file statistics and creating files on Linux.	7:03	Managing Files and Directories	Linux
133	find	- Description of find command in Linux. - Lists various option for find command. - Utilization of find command for finding user created files on Linux.	3:38	Finding Files	Linux
134	stat	- Description of stat command in linux. - Lisls various options for stat command. - Using stat command to provide various statistical details about input files.	2:43	Finding Files	Linux
135	which	- Description of which command in Linux. - Lists various option for which command. - Utilization of which command to find the installed programs on Linux.	3:43	Finding Files	Linux
136	cat	- Description of cat command in Linux. - Lists various option for cat command. - Utilization of cat command for visualization and inspection of text data on Linux.	3:55	Processing Files	Linux
137	cut	- Description of cut command in Linux. - Lists various option for cut command. - Utilization of cut command for cutting out the sections from each line of files and writing the results as standard output.	5:48	Processing Files	Linux
138	diff	- Description of diff command in linux. - Lists different options for diff command. - Using diff command to find out differences between different files.	2:34	Processing Files	Linux
139	grep	- Description of grep command in linux. - Lists different options for grep command. - Using grep command to find uncharacterized protein in human genome.	8:55	Processing Files	Linux

140	sort	- Description of sort command in linux. - Lists different options for sort command. - Using sort command to sort datasets in tab delimited and other bioinformatics files.	4:22	Processing Files	Linux
141	uniq	- Description of uniq command in linux. - Lists different options for uniq command. - Using uniq command to filter out the repeated lines in a file. In simple words.	10:32	Processing Files	Linux
142	wc	- Description of wc command in linux. - Lists different options for wc command. - Using wc command to count number of words, chacters or lines within a file.	2:45	Processing Files	Linux
143	gunzip	- Description of gunzip command in Linux. - Lists various option for gunzip command. - Utilization of gunzip command to extract compressed content of file on Linux.	2:14	Archiving \& Compressing Files	Linux
144	gzip	- Description of gzip command in Linux. - Lists various option for gzip command. - Utilization of gzip command to compress and archive files efficiently on Linux.	6:05	Archiving \& Compressing Files	Linux
145	tar	- Description of tar command in linux. - Lisis different options for tar command. - Using tar command to create archives of genome data.	4:18	Archiving \& Compressing Files	Linux
146	wget	- Description of wget command in linux. - Lists different options for wget command. - Uding wget command to retrieve genome assemblies.	6:48	Displaying Dates \& Time	Linux
147	Column	- Description of column command in linux. - Lists different options for column command. - Using column command to retrieve specific columns from tab delimited or comma delimited files.	4:38	Processing Files	Linux
148	head	- Description of head command in Linux. - Lists various option for head command. - Utilization of head command to read specified number of lines from top in files on Linux.	3:49	Processing Files	Linux
149	tail	- Description of tail command in Linux. - Lists various option for tail command. - Utilization of tail command to read specified number of lines from botton in files on Linux.	2:22	Processing Files	Linux
150	\| (Piping)	- Description of Piping character in Linux. - Utilization of piping methodologies for bioinformatics analysis.	6:34	Piping \& Redirection	Linux
151	vim	- Description of vim command in Linux. - Lists various option for vim command. - Utilization of vim command to create and edit text files.	5:58	Text Editor	Linux

