Segment No.	Lecture Title	Description	Category
1	Introduction to UniProt	 Introduction to UniProt, its purpose and uses. Sub-databases hosted by UniProt database. 	UniProt
1	UniProtKB & Protein Analysis	 Introduction to UniProtKB database. Retrieval and analysis of protein sequences and genomic level information of proteins. 	UniProt
1	UniProteome & Retreieval of an Entire Proteome	 Introduction to UniProteome Retrieval of an entire proteome Proteomics data and data annotation 	UniProt
1	UniRef & Retrieve Protein Clusters	 Introduction to UniRef Describes clusters sets from UniParc and UniProtKB Sequence space at three resolution (UniRef100, UniRef90, UniRef50). 	UniProt
1	UniParc & Find the Non- Redundant Entries	 Introduction to UniParc Retrieval of non-redundant protein sequences. Non-redundant protein sequence data and data annotation. 	UniProt
1	Peptide Search: Searching for a Particular Peptide on UniProt	 Introduction to Peptide Search tool hosted by UniProt database. Search methods of retrieving a particular amino acid sequence. Retrieving regions of particular protein against the entire 	UniProt
1	Introduction to Protein Data Bank (PDB)	 Introduction to Protein Data Bank (PDB). Describes the repository of experimentally structured biomolecules. 	PDB
1	Accurately Searching for a Protein Structure on PDB & Protein Analysis	 Describes different search methods to retrieve query protein molecule on PDB. Defines parameters and filters to specify the searches. Accurately seatching a protein structure on Protein Data 	PDB

1	Browsing PDB According to Annotation	 Retrieval of a protein structure using Biological annotation on PDB. Describes categories of annotation and their description. 	PDB
1	Digging Out Categorized & Specific Protein Structures from PDB Archives	 Retrieval of detailed information for a particular protein structure through Protein Data Bank (PDB). Accessing the PDB Archive using multiple sorts of parameters. 	PDB
1	3D Structure Visualization on PDB	 Visualization and analysis of protein structure using visualization tool hosted by PDB. Defines parameters to interactively visualize the protein. 	PDB
1	Biological Annotation and Protein Features View & Analysis	 Visualization of features of the query protein through Protein Data Bank. Procedure to look into the visualization and analysis of the protein features. 	PDB
1	Protein Symmetry: Understanding the Protein Validation	 Description of protein symmetry page of Protein Data Bank (PDB). Visualization and analysis of protein of interest. 	PDB
1	NCBI BLAST Database Searching	 Describes NCBI BLAST searching to find regions of similarity between biological sequences. Calculates statistical significance. Compares nucleotide and protein sequences to sequence 	NCBI
1	UniProt BLAST & Protein Database Searching	 Searching a query against the entire UniProt databse using UniProt BLAST Detailed analysis of local similarity, functional and evolutionary relationship between different sequences 	UniProt
1	Introduction to InterPro	 Protein family classification and analysis using InterPro database. Proteome analysis of a particular protein. Protein families domains analysis. 	Protein Families Database
1	InterPro - Protein Family Classifcation and Analysis	 Introduction to UniProt BLAST searching tool. Finds functional and evolutionary relationship between sequences. Search query sequences against the entire UniProt database. 	Protein Families Database

1	Protein & Protein Domain Analysis	 Protein and protein domain analysis through InterPro database. Protein families domain analysis. 	Protein Families Database
1	Pfam: Understanding Protein Families and their Members	 Detailed introduction of a database of curated protein families, Pfam. Analyze a protein and retrieve significant information related to that protein. 	Protein Families Database
1	PROSITE: Understanding and Analyzing Protein Motif and Domain Profiles	 Introduction to protein domain, families and functional sites database, PROSITE. Analyze various informative sections provided by the documentation page. 	Protein Families Database
1	Introduction to Molecular Modeling Database (MMDB)	 Introduction to Molecular Modeling Database (MMDB). Retrieval and analysis of a particular dataset from MMDB. Lists the tools provided by MMDB. 	NCBI
1	STRING: Protein-Protein Network Database and Analyzing PPI Between Proteins	 Introduction to protein-protein iInteraction database, STRING. Understading of protein interaction network through analyzing the query protein result and visualization. 	PPI Database
2	NEEDLE: Pairwise Global Sequecne Alignment	 Introduction to EMBOSS Needle, a pairwise alignment tool. Procedure to perform and analyse global alignment and track the optimum sequence. 	Pairwise Sequence Alignment
2	WATER: Pairwise Local Sequence Alignment	 Introduction to EMBOSS Needle, a pairwise alignment tool. Procedure to perform and analyse local alignment and how Needleman-Wunsch algorithm works. 	Pairwise Sequence Alignment
2	UniProt Align & Alignment of 2 Proteins	 Description of UniProt Align tool hosted by UniProt Database. Aligning multiple sequences using UniProt Align tool. Annotation of alignment results. 	Pairwise Sequence Alignment
2	Alignment Between Two PDB Sequences & Structures	 Alignment of biomolecular structures and sequeces through a PDB tool; sequence & structure alignment. Defines parameters to align two query molecules and it's analysis. 	Pairwise Sequence & Structure Alignment

2	Clustal Omega: Multiple Sequence Alignment	 Introduction to Clustal Omega, a multiple sequence alignment tool. Procedure to align multiple sequence using Clustal Omega. Interpretation of the output final alignment. 	Multiple Sequence Alignment
2	Aln2Plot: Prediction of Hydrophobocity Between Two Proteins	 Introduction to Aln2Plot tool. Generates graphical plots of hydrophobicity and side chain volumes for two or more query proteins using the Aln2Plot tool. 	Protein Analysis
2	REPPER: Prediction of Gapless Repeats in Protein Sequences	 Introduction to REPPER to analyses regions with short gapless REPeats in protein sequences. Analysis of output that is complemented by coiled coil prediction (COILS) and optionally by secondary structure 	Protein Analysis
2	SignalP: Prediction of Signal Peptide in Proteins	 Introduction of SignalP tool. Predicton of signal peptide from protein sequence. 	Protein Analysis
2	TargetP: Prediction of Protein Localization	 Introduction to TargetP server. Prediction and detailed analysis of Mitochondrial transfer peptide through TargetP. 	Protein Analysis
2	ScanProsite: Prediciton of Important Functional Sites in Proteins Using Profiles	 Establishment of ScanProssite, an improved version of the web-based tool provided by PROSITE. Scan proteins for matches against the PROSITE collection of motifs as well as against your own patterns. 	Motif & Domain Analysis
2	HMMER: Prediction of Import Functional Sites in Proteins Using Hidden Markov Models	 Introduction of HMMER; hidden Markov model based database for protein profiling. Retrieve the sequence homologs of the query protein using the HMM profile method and it's elaborated analysis. 	Motif & Domain Analysis
2	SMART: Finding Domains in Proteins	 Introduction of SMART; Simple Modular Architecture Research Tool for the identification and analysis of protein domains. Detection of protein domains from the multiple sequence alignments of proteins. 	Protein Analysis
2	Ali2D	 Use of Ali2D tool for secondary structure prediction. Detailed analysis of the secondary structure prediction results. 	Secondary Structure Prediction

2	Quick2D	 Use of Quick2D tool for secondary structure prediction. Detailed analysis and information retrieval of the secondary structure features like alpha-helices, extended beta-sheets, transmembrane helices and disorder regions of the query protein. 	Secondary Structure Prediction
2	HHrepID: Prediction Secondary Structure of Proteins	 Introduction to HHrepID, a web-based tool for the prediction of secondary structures of the protein. Find repetitive regions within a query protein sequence using the HHrepID tool. 	Secondary Structure Prediction
2	DeepCoil: Prediction of the Coiled-coil Domain Regions	 Introduction to a web based tool, DeepCoil. Prediction of the coiled coil domain regions within a query protein sequence. 	Secondary Structure Prediction
2	MARCOIL: Analysis of Coiled-coil Domains of Proteins	 Introduction to Marcoil, an HMM for the recognition of proteins with a CCD. Analysis and prediction of potential coiled-coil domains in protein sequences. 	Secondary Structure Prediction
2	Jpred: Prediction Secondary Structure of the Proteins	 Use of Jpred server for secondary structure prediction. A detailed analysis of secondary structure features' information of the query protein sequence. 	Secondary Structure Prediction
3	PEPFOLD 3 Peptide Structure Modeling	 Introduction to PEPFOLD_3 server and its purpose. Generating 3D models of a peptide using the query sequence. Defines parameters and analysis of results. 	Peptide Structure prediction
3	MODELLER	 Introduction to Modeller tool and its uses. Procedure to predict a protein structure through Modeller. Evaluation method of MODELLER to find out the most optimal and good protein structure predicted. 	3D Structure Prediction
3	SwissModel	 Introduction to homology modeling and SwissModel, a homology modeling server. Prediction of protein structure for a target sequence using SwissModel. 	3D Structure Prediction
3	HHPRED	 Basic description of HHPred tool and its purpose. Procedure to predict the protein structure from target sequence through HHPred tool. Selecting a particular template structure for homology 	3D Structure Prediction

3	М4Т	 Introduction to M4T, a protein structure prediction tool. Procedure to predict the protein structure from a Target protein sequence, using the M4T server. 	3D Structure Prediction
3	IntFOLD	 Introduction to IntFOLD and its purpose. Procedure to predict the protein structure from target protein sequence, using the IntFOLD server. Interpretation of results. 	3D Structure Prediction
3	ROBETTA	 Introduction to Robetta, a protein structure prediction tool. Procedure to predict and analyse protein structure. Prediction of protein structure for a query sequence using ab-initio 	3D Structure Prediction
3	Homology Modeling Using MOE	 Introduction to homology modeling and Molecular Operating Enviroment (MOE) tool. Generating a homology 3D model of a target protein using MOE. 	3D Structure Prediction
4	Chimera	 Introduction to UCSC Chimera and its uses. Visualization and analysis of a protein 3D model using Chimera. Comparing and analysis of more than one protein structure for research 	3D Structure Visualization
4	PyMol	 Introduction to PyMol. Defines parameters to visualize and analyze the protein 3D model. Commands used in PyMol to visualize and manipulate protein 3D model. 	3D Structure Visualization
4	WhatCheck	 Introduction to WhatCheck, a protein model evaluation tool. Utilization of WhatCeck tool for protein model evaluation. Analysis and implication of results for protein structure evaluation. 	3D Structure Evaluation
4	ProCheck	 Introduction to ProCheck, a protein model evaluation tool. Utilization of ProCheck to check quality of protein model based on certain parameters. Interpretation of results to select the best model. 	3D Structure Evaluation
4	ERRAT	 Introduction to ERRAT, a protein model evaluation tool. Procedure to evaluate experimentally determined protein model. Analysis and interpretation of results to evaluate the best model. 	3D Structure Evaluation

4	Verify3D	 Introduction to Verify3D, a protein model evaluation tool. Procedure to evaluate a protein model using the web server of Verify3D. Interpretation and analysis of the results provided by Verify3D 	3D Structure Evaluation
4	RAMPAGE	 Introduction to RAMPAGE, a protein model evaluation tool. Procedure to evaluate protein model based on Ramachandran plotting by RAMPAGE. Interpretation of Ramachandran plotting to select the best 	3D Structure Evaluation
4	PROSA	 Introduction to ProSA server. Procedure to evaluate protein model predicted using different methods. Analysis of three different structures of the protein predicted from three 	3D Structure Evaluation
4	SAVES	 Introduction to SAVES tool and its purpose. Procedure to evaluate a predicted protein model using Saves server. Analysis of Ramachandran plot generated by the SAVES server for the 	3D Structure Evaluation
5	Molecular Docking of Protein Ligand using MOE	 Introduction to Molecular Operating Environment (MOE) and molecular docking. Preparation of the receptor for docking. Searching active site residues in receptor and ligand 	Molecular Docking
5	Protein-protein Docking using MOE	 Basic description of Molecular Operating Environment (MOE) software and protein-protein docking. Procedure to dock a ligand protein against a receptor protein (protein- 	Molecular Docking
5	SwissDock	 Introduction to SwissDock server and its purpose. Procedure to dock a ligand compound against a receptor molecule (Protein-Ligand Docking). Defines parameters to be selected for docking process. 	Molecular Docking
5	Docking a Library of Compounds using MOE	 Introduction to Molecular Operating Environment (MOE) software and its uses. Procedure of docking a library of compounds against a particular protein 	Molecular Docking
5	ClusPro Protein-Protein Docking	 Introduction to ClusPro server and its purpose. Utilization of various features of ClusPro to perform protein-protein doc king. Describes advanced functionalities offered by ClusPro to 	Molecular Docking

5	patchDock	 Introduction to PatchDock server and its purpose. Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the PatchDock server. 	Molecular Docking
5	MDockPEP protein peptide docking	 Introduction to MDockPEP server and its uses. Procedure to dock a receptor protein molecule against the ligand peptide molecule (Protein-Peptide docking) using the MDockPeP server. 	Molecular Docking
5	ZDOCK	 Introduction to ZDOCK server and its purpose. Procedure to dock a receptor protein molecule against the ligand protein molecule (Protein-Protein docking) using the ZDOCK server. Procedure to dock a protein molecule against its multimers 	Molecular Docking
5	Structure Based Drug Desinging Using MOE	 Introduction to MOE software and structure based drug designing. Procedure to design a drug based on knowledge of 3D structure of biological target. 	Molecular Docking
5	Discovery Studio+	 Introduction to Discovery Studio+ software and structure based drug designing. Procedure to design a drug based on knowledge of 3D structure of biological target. Defines parameters and modifications to make the ligand 	Molecular Docking
5	AutoDock	 Introduction to AutoDock software and structure based drug designing. Procedure to design a drug based on knowledge of 3D structure of biological target. Defines parameters and modifications to make the ligand 	Molecular Docking
5	PDBsum Docking Complex Evaluation	 Introduction to PDBsum server and its uses. Procedure to evaluate protein-protein and protein-ligand docking complex using PDBsum server. Analysis and interpretation of evaluation results. 	Docking Complex Evaluation
5	PDBepisa Docking Complex Evaluation	 Introduction to PDBePISA server and its purpose. Evaluation of protein-protein and protein-ligand docked complex through PDBePISA server. Defines parameters for an optimal docking complex model. 	Docking Complex Evaluation
5	SwissADME	 Introduction to SwissADME server and its purpose. Evaluation of pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules or ligands. Defines parameters for an optimal docking complex model. 	Docking Complex Evaluation

6	Getting Started With Molecular Dyanmics Simulation - Pre-processing of Protein Structure and Removal of Unncessary Structural Features	 Introduction to GROMACS and its installation. Pre-processing of the protein structure and removal of unnecessary structural features. 	Protein Simulation
б	pdb2gmx - Construction of Topology File for Simulation	 Introduction to pdb2gmx tool of GROMACS. Construction of topology file for simulation. 	Protein Simulation
6	Defining a Solvant Box for Simulation	 Introduction to GROMACS for defining solvant box. Definig a solvant box to prepare the protein for simulation. 	Protein Simulation
6	Solvation - Adding Water Molecules in Solvant Box	 Introduction to GROMACS for defining solvant box. Adding water molecules in solvant box to prepare the protein for simulation. 	Protein Simulation
6	Generating Input Run File Replacement of Water Molecues With Ions	 Generating input run file. Replacing the water molecules with ions for protein simulation. 	Protein Simulation
6	genion - Replacement of Water Molecules With Ions	 Introduction to genioin tool of GROMACS. Replacing the water molecules with ions for protein simulation. 	Protein Simulation
6	Energy Minimization - Relaxing and Fixing the Structure for Simulation	 Introduction to gmx energy tool of GROMACS. Relaxing and fixing the structure for protein simulation. 	Protein Simulation
б	GRACE - Visualization and Analysis of Minimized Structure	 Introduction to gmgrace tool of GROMACS. Visualization and analysis of minimized structure of the protein. 	Protein Simulation
6	Equibiliration of Protein Structure NVT ENSEMBLE Phase 1	 Introduction to nvt tool of GROMACS. Phase 1 of NVT ENSEMBLE to equilibrate the protein structure. 	Protein Simulation

6	Equibiliration of Protein Structure NPT ENSEMBLE Phase 2	 Introduction to nvt tool of GROMACS. Phase 2 of NVT ENSEMBLE to equilibrate the protein structure. 	Protein Simulation
6	mdrun - Executing Simulation Analysis	 Introduction to mdrun tool of GROMACS. Execution of MD simulation on the protein structure. 	Protein Simulation